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Abstract

One of the primary goals of the spin physics program at the STAR experiment is to
constrain the polarized gluon distribution function, ∆g(x,Q2), by measuring the double
longitudinal spin asymmetry, ALL, of various final-state channels. Neutral pions provide a
potentially powerful final state because they are copiously produced in p+p collisions and
have few backgrounds.

In 2009, STAR took 14 pb−1 of integrated luminosity of 200 GeV p+p collisions, with
average beam longitudinal polarization of 59%. Neutral pions produced in these collisions
can be identified using STAR’s large-acceptance electromagnetic calorimeter, with help
from tracking from the STAR Time Projection Chamber. This work presents a measure-
ment of the inclusive neutral pion ALL from this data, based on a new π0 reconstruction
algorithm. A comparison to theoretical predictions and other experimental results suggests
that the current best-fit value of ∆G, the gluon contribution to the proton spin, is too small
and that ∆G is actually comparable in magnitude to the quark contribution to the proton
spin ∆Σ.
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Chapter 1

Introduction and Theoretical

Background

The question of how the proton’s spin arises out of its components is an interesting unsolved

problem in hadron structure. But it is more than that: it is also an investigation of the

nature of QCD, the theory of the strong force. Understanding how quarks and gluons,

the fundamental particles of QCD, combine to form the proton, one of the fundamental

particles of the world we see, has always been one of the main goals of the study of QCD,

and attempting to determine the origin of the proton spin is one way in which we can make

progress on this problem.

This thesis will present a measurement, using data taken by the STAR experiment of 200

GeV longitudinally polarized proton-proton collisions at the Relativistic Heavy Ion Collider

at Brookhaven National Laboratory, of the double helicity asymmetry in the production

of neutral pions, a measurement that can be used to constrain the value of the gluon

polarization in the proton and thus bring us closer to an understanding of the proton’s

internal structure. The remainder of this chapter will discuss the theoretical background

to this measurement. The second chapter will discuss the accelerator – RHIC – and detector

– STAR – needed to do this measurement. The third chapter will explain how neutral pions

17



are found in the data, and the fourth how the double helicity asymmetry is constructed.

Finally, the last chapter will discuss results and conclusions.

1.1 Proton Structure and QCD

The proton has been known to be a composite object since the late 1960’s, when deep

inelastic scattering (DIS) experiments carried out at SLAC revealed the existence of point-

like, spin-1/2 particles within the proton. DIS involves the scattering of an energetic lepton

(in this case, an electron) off the nucleons in a fixed target. If the momentum transfer Q2

is sufficiently large, the electron no longer interacts with the proton’s charge distribution

but instead sees the individual nearly free quarks that make up that distribution: this is

seen experimentally by the fact that the proton structure functions cease to depend on

Q2 (because no matter how much more closely the electron probes the proton, all it sees

are the pointlike quarks), a phenomenon known as Bjorken scaling. Additionally, the fact

that the quark has spin 1/2 could be derived from the relationship between the two proton

structure functions [10] [17].

Quark theory itself, however, dates to the early 1964, when Murray Gell-Mann at-

tempted to explain the proliferation of elementary particles by proposing that all (exclud-

ing leptons) were bound states of two or three quarks, with the proton being made up of

two charge-2/3 up quarks and one charge-1/3 down quark. In a way, the SLAC results

confirmed Gell-Mann’s hypothesis: however, Gell-Mann had proposed that the proton was

made up of three bound quarks, while the objects (referred to as partons, a term that has

persisted to refer to any constituent of a proton) that the electrons in DIS were scattering

off of were free particles. This discrepancy was reconciled by quantum chromodynamics

(QCD), the theory of the strong force.

QCD is a fully relativistic quantum field theory, analogous in many ways to quantum

electrodynamics (QED). Just as “electro” in “electrodynamics” refers to the electric charge,

the “chromo” in “chromodynamics” refers to the three charges that exist in QCD, known

18
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Figure 1 The lowest order Feynman diagram for deep inelastic lepton scattering.

is shown in Figure 1. For neutral-current reactions of charged leptons, the inter-
action can be mediated by a virtual photon or a Z boson. At present fixed-target
energies, the cross section for scattering of charged leptons is dominated by virtual
photon exchange, and we neglect here the Z -exchange contribution.
In this chapter, we focus on inclusive scattering where the scattering amplitudes

are summed over all possible hadronic final states. The unpolarized inclusive cross
section can be written as a function of two independent kinematic variables. It is
customary to choose two of the following Lorentz-invariant variables:

1. The squared four-momentum transfer,

Q2 = −q2 = −(k − k �)2 = 4EE � sin2 θ; 3.

2. the energy transfer to the hadronic system,

ν = p · q/M = E � − E; 4.

3. the Bjorken scaling variable,

x = Q2/2p · q = Q2/2Mν; 5.

4. the scaling variable,

y = p · q/p · k = ν/E . 6.

In these equations, k, k �, p, and q are the four-vectors of the initial- and final-
state lepton, the target nucleon, and the exchanged boson. M is the mass of the
target nucleon, whereas the lepton mass has been neglected. E , E �, and θ are the
energies of the incident and scattered lepton, and the lepton scattering angle, in
the laboratory frame.
Neglecting lepton masses, the differential cross section for unpolarized deep

inelastic charged lepton scattering can be written, in the Born approximation,
as (e.g. 2)
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Figure 1-1: Feynman diagram for deep inelastic scattering

as red, blue, and green (because particle physicists have a strange sense of humor). In

QED, charged particles interact by exchanging photons; in QCD, they exchange gluons,

although unlike the photon, the gluon also carried charge and so gluons can interact with

each other. And just as in QED, there is a fundamental coupling constant, αs rather than

α. However, there is a very important difference in the behavior of the coupling constants in

QED and QCD. In QED, the coupling constant increases at smaller and smaller distance

scales (although the scales have to be quite small for this effect to become important).

In QCD, the opposite occurs: as the distance scale becomes smaller (or the momentum

transfer Q2 increases), αs falls as well. Conversely, as the distance scale increases (and Q2

falls), αs also gets larger. The result is a theory that incorporates both the SLAC results

and Gell-Mann’s quark theory: at the high Q2 of DIS, the quark appears to be free, while

if one wishes to regard a proton as a single object, one must look at a lower Q2 value,

where the large value of the αs means that the quarks are bound. This feature of QCD in

which bound quarks can almost achieve freedom inside a hadron is known as asymptotic

freedom. QCD makes a further prediction: gluon interactions with the quarks would cause

Bjorken scaling to be violated, as will be discussed in more detail later [29] [20].

A few additional notes are necessary on QCD in proton-proton colliders. In DIS, the

experiment is relatively simple: an electron interacts with a quark, and the subsequent
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behavior of the electron gives the experimenter almost all the necessary information. Un-

fortunately, DIS is limited in two ways: the electron can never interact with a gluon, because

the gluon carries no electric charge, and the center-of-mass energy of the electron-quark

interaction is necessarily limited. Ideally, we would like to accelerate quarks and collide

them with each other: unfortunately, thanks to QCD quarks are bound permanently inside

hadrons, so we have to settle for colliding two hadrons, e.g. two protons. Unfortunately,

proton-proton collisions are considerably more complex than DIS events. In a pp collision,

we are interested in the hard scattering of two partons (they could be quarks or gluons),

but both protons contain a large number of partons, with various momenta, and we have

no way to know which will be involved. Additionally, we cannot examine the partons after

the scattering is complete: instead, we have to look at the results of their fragmentation

into hadrons, without knowing how exactly that process will take place.

A couple of further features of QCD simplify the problem somewhat. The first is

factorization, which allows us to break down the pp cross section for the production of some

final state, say a π0, in terms of some set of kinematic variables P , dσ
dP , into a product of

three probabilities, those for a particular initial state, for some scattering process to occur,

and for the final state that you want to be produced. The initial state is described by the

parton distribution functions (PDFs) f(x, µ2), which describe the likelihood of finding a

parton in a proton with some fraction x of the proton’s momentum (µ is the factorization

scale); the scattering process comes in via the partonic hard scattering cross-section dσ̂
dP ;

and the final state is described by the fragmentation function (FF) D(z, µ2), which gives

the likelihood of a parton fragmenting into a hadron with some fraction z of the parton’s

momentum. Thus we can write the overall cross-section as (summing over possible initial

states and end products of the partonic hard scattering)

dσpp→π
0X

dP
=
∑

f1,f2,f

∫
dx1dx2dzf1(x1, µ

2)f2(x2, µ
2)× dσ̂f1f2→fX

′

dP
Dπ0

f (z, µ2)

20



P1: FOF
November 5, 2000 14:35 Annual Reviews AR115-12

530 BUNCE ET AL

Figure 2 Production of a large-pT
pion in a hard pp collision.

a cross section is written in a factorized form as a convolution of appropriate
parton densities and/or fragmentation functions with a partonic subprocess cross
section. The predictive power of perturbative QCD follows from the universality
of the distribution functions: Once extracted from the data in one process, they
can be used to make definite predictions for any other. As an example, let us
consider the production of a pion with large pT in a collision of unpolarized
protons, that is, pp → πX . The process is depicted in Figure 2. In the parton
model framework, in the context of QCD perturbation theory, one writes the cross
section as a convolution,

dσ pp→πX

dP =
∑

f1, f2, f

∫
dx1dx2dz f

p
1 (x1, µ2) f

p
2 (x2, µ2)

× dσ̂ f1 f2→ f X ′

dP (x1 p1, x2 p2, pπ/z, µ)Dπ
f (z, µ

2), 1.

where p1 and p2 are the incident proton momenta. Here, P stands for any ap-
propriate set of the kinematic variables of the reaction. Furthermore, f pi (x, µ2) is
introduced as the probability density for finding a parton of type fi in the proton,
which has taken fraction x of the proton’s momentum. Likewise, Dπ

f (z, µ2) is the
probability density for finding a pion with momentum fraction z in the parton f .
The σ̂ f1 f2→ f X ′ are the underlying hard-scattering cross sections for initial partons
f1 and f2 producing a final-state parton f plus unobserved X ′.
The functions f p and Dπ

f introduced in Equation 1 express intrinsic proper-
ties of the proton and of the hadronization mechanism, respectively. Therefore,
they are sensitive to non-perturbative physics and cannot be calculated from first
principles in QCD at present. In contrast to this, for a sufficiently hard process,
it will make sense to calculate the subprocess cross sections σ̂ f1 f2→ f X ′ as per-
turbation series in the strong coupling αs . The separation of short-distance and
long-distance phenomena as embodied in Equation 1 necessarily implies the in-
troduction of an unphysical mass scale µ, the factorization scale. The presence
of µ arises in practice when computing higher-order corrections to the σ̂ f1 f2→ f X ′ .
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Figure 1-2: Neutral pion production in a pp collision

The partonic hard scattering cross-section can usually be calculated using perturbative

QCD, but the other two pieces of the puzzle are non-perturbative (low-energy) and so

non-calculable (at least, not in perturbative QCD). However, there is a second feature of

QCD, universality, which solves this problem. We can measure the PDFs and FFs in any

other experiment (in particular, in theoretically simpler experiments such as DIS, or for

fragmentation functions even simpler experiments like e+ − e− collisions), and then apply

the results to our experiment [2].

1.2 The Proton Spin

Spin (which for the proton, a fermion, has the value of 1
2~: as per usual, the ~ will be

dropped throughout) does not make an appearance in the above discussion, even though

it has been important in investigations of proton structure since 1933, when Otto Stern

measured the proton magnetic moment to be about 2.5 times as large as predicted, sug-

gesting the possibility of some internal structure. Once the compositeness of the proton

was experimentally confirmed, that left the question of how its spin arises, as it must, out

of its components. In the simple bound-quark theory of Gell-Mann, it’s obvious: two of

the quarks have their spin in one direction while one has its spin in the opposite direction.
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This simple model even does a relatively good job of predicting the proton anomalous

magnetic moment. In the fully relativistic world of QCD, though, it is clearly insufficient.

Gluons have spin, too, and their spin may contribute to the proton’s spin. The quark

sea – quark-antiquark pairs that pop out of the vacuum before annihilating – may also

contribute from its spin. Additionally, the quarks and gluons are not bound within the

proton, so they may have some orbital angular momentum, which could also contribute to

the overall spin. Working on the light cone and in the A+ = 0 gauge, we can write a sum

rule for the proton spin that includes all of these components [22]:

1
2

=
∫ 1

0
dx{1

2
∆q(x,Q2) + Lq(x,Q2) + ∆g(x,Q2) + Lg(x,Q2)}

Or, as it is more usually represented,

1
2

=
1
2

∆Σ + Lg + ∆G+ Lq

∆Σ is the quark polarization, the contribution of the quark spin to the proton spin, ∆G

is the same for gluons, and Lg and Lq are the quark and gluon angular momentum con-

tributions respectively. Note that It is also possible to write a relation in the laboratory

frame,

1
2

= L̂q +
1
2

Σ + Ĵg.

In this frame, however, there is no gauge-invariant representation of the gluon polarization,

and so it is subsumed into Ĵg, the total gluon contribution to the proton spin [24].

1.2.1 Quark Polarization and the “Spin Crisis”

The first attempts to break down the proton spin in terms of its constituents focused on

the quark polarization and angular momentum. ∆Σ can be written as

22



∆Σ =
∫ 1

0
dx

∑

q=u,d,s...

(∆q(x) + ∆q(x))

where ∆q(x) is, for a given quark flavor,

∆q(x) = q+(x)− q−(x).

q+(x) is the polarized quark PDF, the probability of finding a quark not only with mo-

mentum fraction x, as previously discussed, but also with its spin aligned with that of the

proton, and q−(x) is the same except for a quark with spin anti-aligned to the proton spin.

It is possible to use the parton model to predict ∆Σ by means of a sum rule, the

Ellis-Jaffe sum rule, for the spin-dependent structure function g1,

g1(x) =
1
2

∑

i

e2
i∆qi(x),

where the i’s run over the quark flavors. Making some assumptions, including that only

u and d quarks contribute (i.e., that ∆s = 0, as heavier quarks wouldn’t be expected to

contribute anyway), the integral of g1(x), and hence also ∆Σ, can be written in terms of

quantities that are calculable from β-decay experiments. This yields the Ellis-Jaffe sum

rule prediction that ∆Σ ∼ .6, with the remainder of the proton spin arising from the quark

angular momentum [6].

The first test of this prediction was carried out by the European Muon Collaboration

(EMC) experiment at CERN. The EMC experiment was a polarized DIS experiment: i.e.,

just like an ordinary DIS experiment, except that both the beam (here muons, rather than

electrons as at SLAC) and the target are polarized. By measuring the difference in cross-

sections when the longitudinally polarized muons have their spin aligned and anti-aligned

with the spin of the longitudinally polarized target nucleon (actually the asymmetry, which

23



is just the difference divided by the total cross-section), the EMC experiment was able to

probe g1(x) and so derive a value for ∆Σ. To everyone’s surprise, the value was much

smaller than expected, ∆Σ(Q2 = 10.7GeV 2) = .13± .19 [13](with subsequent experiments

suggesting that the value is closer to .25 or .3). This experimental determination that the

quark polarization did not actually make a major contribution to the spin of the proton

gave rise to what was then known as the “spin crisis” and produced considerable speculation

that the origins of proton spin might lie in the gluon polarization instead [23].

1.3 The Gluon Polarization

The gluon polarization, ∆G, is just the first moment of ∆g(x,Q2), which is defined by

analogy to ∆q(x,Q2) as g+(x,Q2)−g−(x,Q2), the difference between the PDF for a gluon

with spin aligned with the proton and one with spin anti-aligned. Because photons do

not couple to gluons, ∆G cannot be probed directly in polarized DIS experiments. It’s

possible to use polarized DIS to access ∆G indirectly by taking advantage of the violation

of Bjorken scaling. The presence of gluons in the nucleus adds additional possibilities to

the standard electron-quark interaction: the quark may also radiate a gluon, or absorb

one, or radiate a gluon before the interaction that it absorbs afterwards, or engage in even

more complicated interactions. Effectively, these quark-gluon interactions mean that the

electron is not actually scattering off of a single, well-defined point particle: instead, it is

seeing a structure composed of a quark and a field of gluons, and the more strongly the

electron probes this structure (i.e., the higher the Q2), the more gluons it sees. Therefore

the structure functions, including g1, are not only dependent on x but also on Q2, and

the extent of their dependence on Q2 is dependent on the gluon PDF, either polarized

or unpolarized depending on the experiment. Unfortunately, this technique, while very

successful at measuring unpolarized gluon PDFs, provides only poor constraints on ∆g(x),

due to the fact that data on g1 is currently only available at a limited range of Q2 values (see

Figure 1.3 [5]). One way to surmount this obstacle is to avoid it by using a hadronic probe
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Figure 1-3: Polarized gluon density at Q2=10 GeV obtained from polarized DIS from de
Florian, Navarro, and Sassot: the green band is the ∆χ2 = 1 uncertainty, and the yellow
the ∆χ2 = 2% uncertainty.

which can interact directly with gluons. Due to QCD confinement, such a probe must

actually be a parton within a polarized hadron, scattering off of a gluon inside another

polarized hadron.

1.3.1 Measuring ∆G at a Hadron Collider

Just as the EMC experiment used cross-section asymmetries to measure ∆Σ in polarized

DIS, we can use cross-section asymmetries to constrain ∆G in longitudinally polarized

hadron-hadron collisions. Here, we use the double-spin asymmetry ALL, defined as

ALL =
σ++ − σ+−
σ++ + σ+−

where σ++ is the cross-section for the production of, in the case of this thesis, neutral pions

with the helicities (helicity is the projection of spin onto momentum, which is essentially

the same as spin at high energies) of both proton beams aligned, while σ+− is the cross-

section with the polarizations of the beams anti-aligned. We can factorize this expression

for ALL into its components:
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ALL =

∑
f=q,q,g ∆fa × ∆fb × d∆σ̂fafb→fX × Dπ0

f∑
f=q,q,g fa × fb × dσ̂fafb→fX × Dπ0

f

.

Here ∆fa is the polarized PDF for the parton fa, d∆σ̂fafb→fX is the polarized hard-

scattering cross-section, fa is the unpolarized PDF for that parton, σ̂fafb→fX is the unpo-

larized hard-scattering cross-section, and Dπ0

f is the fragmentation function for the final-

state parton f to fragment into a π0. Clearly if either hard scattering parton fa or fb is

a gluon, ALL will access to ∆g(x,Q2). As the hard scattering cross-sections can be calcu-

lated from perturbative QCD and the unpolarized PDFs and the FF can be measured in

other experiments, ∆g(x,Q2) can be extracted from the experiment, and hence also ∆G.

However, it is difficult, and in practice theoretical predictions of ALL are generated based

on different values of ∆G, with experimental results used to constrain ∆G, rather than

calculate it directly: see Figure 1.4.

1.3.2 The π0

The π0 is a neutral particle, composed of a mixture of uu and dd quark-antiquark pairs,

π0 = 1√
2
(|uu〉 −

∣∣dd
〉
). At a mass of ∼ 135MeV/c2, the π0 is the lightest known meson.

It decays electromagnetically and hence for our purposes instantaneously (that is, it will

be treated as if the decay vertex and the collision vertex are the same), with a lifetime of

8.4 × 10−17 seconds, or cτ = 25.1nm. The primary decay, with branching fraction 98.8%,

is π0 → γγ: this is the decay channel that will be used to identify π0s [18].

1.3.3 Note on Units

As is typical in particle physics, factors of the speed of light, c, will usually be suppressed.

Thus, energy, momenta, and mass will all generally be expressed in units of GeV, instead

of GeV, GeV/c, and GeV/c2 respectively.
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Chapter 2

The RHIC Accelerator and the

STAR Experiment

2.1 RHIC

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)

was, as its name suggests, originally intended for the purpose of colliding heavy ions in

order to study the behavior of quarks and gluons at very high temperatures. It was

predicted that at such temperatures a transition from hadronic to partonic degrees of

freedom would occur, resulting in the formation of a new state of matter, the quark-

gluon plasma. However, this thesis is on data from RHIC’s other program: as the world’s

only polarized proton-proton collider, RHIC provides unique access to the proton spin

structure. The RHIC complex (see figure 2.1) consists of a polarized proton source, a

linear accelerator (LINAC), a Booster accelerator, the Alternating Gradient Synchotron

(AGS), and the RHIC accelerator itself. The LINAC accelerates protons to 200 MeV, after

which they are injected into the booster which further accelerates them to 2 GeV, and

then to the AGS which takes them to approximately 23 GeV. Finally the proton beam is

split and injected into the RHIC rings (the two rings, carrying proton beams in opposite

29



Figure 2-1: The RHIC complex at BNL. The salient features for polarized operations
are identified. STAR is located at the “six o’clock” position at RHIC.

2.2 RHIC and Polarized Protons

Figure 2-1 shows the RHIC complex consisting of a polarized proton source, linear ac-

celerator (LINAC), booster accelerator, Alternating Gradient Synchotron (AGS) and

the RHIC accelerator [29]. Polarized protons are created in an optically pumped po-

larized H− source (OPPIS). Hydrogen gas is ionized and the unpolarized H+ ions are

extracted. The H+ ions then acquire polarized electrons from an optically pumped

rubidium vapor. The polarization of the electron is transferred to the proton. The

atoms then attract a second electron, forming an H− ion. The hydrogen ions, pro-

duced with 80% polarization, are stripped of their electrons then sent through the

LINAC, where they are accelerated to 200 MeV. The proton bunches are injected into

a booster ring where they reach energies of 2 GeV and then into the AGS where they

reach energies of ∼23 GeV. Finally, they are split and injected into the two RHIC

rings where they are accelerated to their final energies of 100 GeV.

RHIC consists of two storage rings, referred to as the blue and yellow rings. Each

ring has a total of 120 fillable bunches. During Run 6, 111 of these bunches were

34

Figure 2-1: The RHIC Complex, with an emphasis on the pieces that are important for
polarized operations.

directions, are referred to as yellow and blue) where they are accelerated to the final energy

of 100 GeV (RHIC is also capable of accelerating to 250 GeV but that data is not used in

this thesis), for collisions at center-of-mass energies of
√
s=200 GeV [11].

2.1.1 Polarization

The most important feature of RHIC for our purposes is its ability to generate beams of

polarized protons and maintain their polarization through acceleration and collisions. An

optically pumped polarized H− source (OPPIS) is used to create polarized protons. First,

hydrogen gas is ionized to obtain unpolarized protons: then the protons acquire electrons

from a rubidium gas which is polarized by a continuous wave laser. The polarization of

the rubidium electrons is transferred to the protons, and then the resulting hydrogen, with

∼80% polarization at this point, acquires another electron to form an H− ion, which allows

it to be accelerated through the LINAC. At the end of the LINAC the ions are stripped
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of their electrons by passage through a foil, creating a polarized proton beam for injection

into the Booster [32] [12].

Maintaining the polarization of this beam is not easy, however. The polarization will

remain stable as long as the proton spin is aligned or anti-aligned with the magnetic bending

field of the accelerator, i.e. is transverse to the beam direction. The spin will precess

around this vertical axis as the proton moves through the magnetic field. But the presence

of horizontal magnetic fields, which can arise either accidentally from misaligned dipole

magnets or be introduced deliberately by focusing quadrupole magnets, will perturb the

spin, and if the frequency of the perturbation matches the frequency of the spin’s precession,

a depolarizing resonance occurs and the protons will start to lose polarization. The main

tool to prevent depolarization from such resonances is a magnet known as a Siberian Snake.

In essence, a Siberian Snake works by providing a strong enough magnetic field that the

stable spin direction for all particles rotates by 180 ◦, thus absorbing the loss of polarization

into a simple switch of polarization directions (for more details, see [27]): see figure 2.2.

The AGS has a partial Siberian Snake, which the protons pass through every rotation: it

only partly rotates the proton spin, but by enough to cause a total spin flip when crossing

a resonance. The AGS also deploys a pulsed RF dipole magnet, which is used for stronger

depolarization resonances caused by horizontal focusing magnets. Like the Siberian Snake,

the RF dipole magnet causes a complete spin flip: it is pulsed each time the beam crosses

a strong resonance. In addition, each RHIC ring has two full snakes [32] [1].

It is also vitally important that the polarization of the beams be monitored. At RHIC,

this is done using two types of polarimeter, a carbon ribbon one which works on the

principal of Coulomb-nuclear interference (CNI) and a hydrogen-gas jet one (see Figures

2.3 and 2.4). The CNI polarimeter consists of a very thin carbon target and a set of

silicon strip detectors. When the target is inserted into the beam, proton-carbon elastic

scattering occurs. At very low momentum transfer squared, coulomb-nuclear interference

effects, arising from the interference between electromagnetic interactions (which are spin-
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Figure 2-2: Precession of the spin vector as it traverses a full Siberian snake. The
blue line indicates the direction of the beam.

called spin rotators rotate the spin vector 90◦ before entering the IR, and then back

afterward.

We also must be able to accurately measure the polarization of the beams to

interpret our results. RHIC uses two types of polarimeters to measure the abso-

lute polarizations of the beams: a Coulomb-nuclear interference polarimeter and a

hydrogen jet gas polarimeter.

The first polarimeter takes advantage of Coulomb-nuclear interference (CNI) ef-

fects in elastic proton-Carbon (pC) scattering. A schematic of this polarimeter is

shown in Figure 2-3. A thin carbon target is inserted into the beam. Protons scatter

off of carbon atoms, which are collected by six silicon strip detectors surrounding the

beam. A left-right asymmetry, with respect to the beam, in scattered carbon atoms

is sensitive to the polarization of the beam. The main advantage of the measurement

technique is the high event rates observed in the elastic pC scattering. Within ∼2

minutes of the strip being inserted in the beam, enough statistics are recorded to make

a ±1% measurement of the asymmetry. The speed of this measurement allows for

periodic monitoring of the beam polarization. Both the blue and yellow rings, as well

as the AGS, have their own CNI polarimeters. More details about CNI polarimetry
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Figure 2-2: The change in the spin vector of a proton as it passes through a full Siberian
snake: the blue arrow shows the direction of the beam.

dependent) and hadronic interactions (which are not), give rise to a left-right asymmetry

in the scattered carbon nuclei. The magnitude of this asymmetry is directly related to the

polarization of the beam. Because of the high event rates, the asymmetry can be measured

rapidly, allowing for periodic monitoring of polarization in both the blue and yellow rings

as well as the AGS [32].

In order to convert the CNI asymmetry measurement into a beam polarization measure-

ment, the CNI polarimeter must be calibrated, which is done using the H-jet polarimeter.

The H-jet polarimeter measures absolute polarization: the beam is scattered off of a po-

larized proton target of known polarization, so the left-right asymmetry in the scattered

protons can be used to calculate the beam polarization directly. As the target is a gas jet,

rather than a solid ribbon as in the CNI polarimeter, the event rate is very low, which is

why the H-jet polarimeter is used only for calibration rather than for ongoing polarization

monitoring [28].

In 2009, STAR took roughly 14 pb−1 of p-p collisions at
√
s = 200GeV, with an average
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4 18.0cm Carbon Ribbon Silicon SensorsTargetD1 D2D3D4D5 D6 Beam Spot
Figure 1. A cross section of the RHIC pC Polarimeter setup. Notice the detector num-
bering in the text is from 0 to 5 (which corresponds to D1 to D6 in this Fig.)

thicker targets used for the measurements. It will be discussed in more details below in
this note.

Since 2008 the main pC operational mode is “target scan”: during this measurement
the target was moving across the beam with uniform spead. This allowed us to measure
not only the average polarization across the beam, but also the polarization and intensity
profiles (beam emittance). Sometimes measurements were done in “fixed target” mode:
the target was placed at beam maximum intenity. In this analysis we used only the scan
measurements.

pC polarization measurements in Run9 physics fills were organized in such a way
that if for example Polarimeter-1 was used for a horizontal scan (with vertical target),
Polarimeter-2 was used for a vertical scan (with horizontal target). If a measurement is
done with a horizontal target the 90 degree detectors (detectors 1 and 4) are partially
shadowed, therefore they were not included in the polarization analysis.

Fig. 2 and 3 summarize the information on targets used in the Run9 measurements.
In all plots in this note only statistical uncertainties are shown unless mentioned oth-

erwise.

2. Response to alphas, energy calibration

The energy calibration of detectors is performed using a 241Am α source. Its energy
spectrum contains two major lines 5.486 MeV (85%) and 5.443 MeV (13%), which can not
be resolved in our measurements. Since the kinetic energy of α is more than a factor of 5
higher than the maximal carbon energy used for the regular polarization measurements,
the signal output for the alpha calibration runs was attenuated by a factor of 5.

Dedicated calibration runs were performed several times throughout Run9 to monitor
gain drifts and operability of strips. Fig. 4 shows a typical result from a calibration
run. The alpha peaks show up at about 180 counts in all strips. Two edge strips in
detector 1 and 6 (strips 0, 1 and 70, 71) were shadowed so were not well exposed to
alphas. Their calibration coefficient was assigned from the average over 10 good strips

Figure 2-3: The RHIC CNI polarimeter setup, looking along the beam.

Figure 2-3: Left: Schematic of the pC CNI polarimeter used in RHIC. The red dot in
the middle represents the beam whose direction is into (or out of) the page. Right:
Schematic of the pp jet polarimeter. The purple cylinder represents the polarized
H−-jet target.

can be found in [51].

The CNI polarimeter is calibrated by scattering the beam off of polarized protons

in a hydrogen jet (H-jet) target. Figure 2-3 shows a schematic of this polarimeter.

Silicon strip detectors on either side of the beam capture the scattered protons. As

in CNI polarimeters, the left-right scattering asymmetry with respect to the beam

is sensitive to the beam polarization. This is a standard technique in measuring the

polarization of proton beams. Since the target’s polarization is measured with a Breit-

Rabi polarimeter and known in this case, the analyzing power of the interaction can be

measured at the same time as the scattering asymmetry. This allows for an absolute

measurement of the beam polarization to within ±3%. Unfortunately, this apparatus

has a low scattering rate due to the low density of the target gas. This makes the H-

jet polarimeter impractical for fill-by-fill polarization monitoring. Instead, we use the

results from dedicated H-jet runs to calibrate the CNI polarimeters. The two types

of polarimetry, taken together, allow real-time absolute polarization monitoring with

5% precision for the entire RHIC run. More information about the H-Jet polarimeter

at RHIC can be found in [40].
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Figure 2-4: Schematic of the RHIC H-jet polarimeter, with the purple cylinder represent-
ing the hydrogen jet target.
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polarization of ∼59%, compared to 7.5 pb−1 and 55% polarization in the previous longest

polarized p-p run in 2006. As the uncertainty in ALL goes as

σALL
∼ 1

P 2 ∗
√∫

Ldt

(where P is the average polarization and the integral over L is the integrated luminosity)

the figure of merit (FOM) for a polarized proton-proton data set is

FOM = P 4 ∗
∫
Ldt

The combination of more data and slightly better polarization gives a FOM for 2009 that

is about twice that of 2006.

2.2 STAR

The Solenoidal Tracker at RHIC (STAR) detector, shown in Figure 2.5 as it was during

Run 9, is more or less a standard particle physics detector. Its center is a Time Projection

Chamber (TPC) which provides charged track identification. Around the TPC is the Barrel

Electromagnetic Calorimeter (BEMC) which measures the energy of neutral particles and

contains a shower-maximum detector (the BSMD) to provide fine position resolution: these

detectors are the most important for this thesis. The Beam-Beam Counter (BBC) and

Zero-Degree Calorimeter (ZDC) both consist of two detectors located on either side of the

main detector which are used for triggering and luminosity monitoring. Other detector

subsystems, mainly in the forward region, are not used in this thesis. A full description of

STAR and all its subsystems can be found in [14] and its references.

A note on terminology: for the accelerator, the overall run is divided into fills, each

corresponding to a beam store. The beam is injected into RHIC and left there until it

degrades to the point that it is no longer useful, which takes roughly 8 hours if everything
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is going well. Polarization measurements are done by fill. The detector then further divides

the fills into runs. A run is a dataset taken at one time, usually lasting 30 minutes to an

hour and comprising on the order of a million events if everything is going right. Relative

luminosity is measured by run.

2.2.1 The TPC

The STAR TPC is a 4.2 m long by 4 m in diameter cylinder of P10 gas (90% Argon

and 10% methane) that sits in a .5 T magnet. A well-defined and uniform electric field

of about 135 V/cm is created by a thin and conductive central membrane, concentric

field-cage cylinders, and the readout endcaps. Charged particles passing through the gas

create ionization electrons, which drift to the endcaps, which have essentially a multi-wire

proportional chamber readout system. The drift electrons avalanche near the anode wires:

the resulting positive ions induce an image charge on the readout pads. As the induced

charge is shared over several pads, the track position can be reconstructed to a small

fraction of the pad width. The z coordinate of the track points is provided by the timing of

the collision, combined with the known drift velocity (∼5.5 cm/µs) of electrons in the drift

gas under known electric and magnetic fields. The gating grid, a wire plane that acts as

a shutter to control the entry of electrons into the readout (as well as preventing positive

ions from entering the drift volume where they would distort the electric field) by having

all wires at the same potential when the grid is ‘open’ and alternative wires at opposite

potentials when it is ‘closed’, ensures that only one event is read out at a time. The TPC

provides charged-particle tracking over η = ±1.3 and the full 2π azimuth [15].

In this analysis, the TPC is primarily used as a vertex finder: the TPC is able to find a

vertex by extrapolating backwards from reconstructed tracks, typically with an error of 1

mm or less. The TPC also provides a veto: photon candidates reconstructed in the BEMC

are only accepted if they do not have a charged track pointing to them.
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BEMC

TPC

BBC

Figure 2-5: The STAR experiment. Note that the ZDCs are too far from the interaction
point to be visible in this diagram. The BSMD is also not visible as it is inside the BEMC.
The second BBC is just visible on the opposite side from the labeled one.
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1. Introduction

The Relativistic Heavy Ion Collider (RHIC) is
located at Brookhaven National Laboratory. It
accelerates heavy ions up to a top energy of
100 GeV per nucleon, per beam. The maximum
center of mass energy for Au+Au collisions is

ffiffiffiffiffiffiffiffi

sNN

p

¼ 200 GeV per nucleon. Each collision
produces a large number of charged particles.
For example, a central Au–Au collision will
produce more than 1000 primary particles per
unit of pseudo-rapidity. The average transverse
momentum per particle is about 500 MeV=c: Each
collision also produces a high flux of secondary
particles that are due to the interaction of the
primary particles with the material in the detector,
and the decay of short-lived primaries. These
secondary particles must be tracked and identified
along with the primary particles in order to
accomplish the physics goals of the experiment.
Thus, RHIC is a very demanding environment in
which to operate a detector.

The STAR detector [1–3] uses the TPC as its
primary tracking device [4,5]. The TPC records the
tracks of particles, measures their momenta, and

identifies the particles by measuring their ioniza-
tion energy loss (dE=dx). Its acceptance covers
71:8 units of pseudo-rapidity through the full
azimuthal angle and over the full range of multi-
plicities. Particles are identified over a momentum
range from 100 MeV=c to greater than 1 GeV=c;
and momenta are measured over a range of
100 MeV=c to 30 GeV=c:

The STAR TPC is shown schematically in
Fig. 1. It sits in a large solenoidal magnet that
operates at 0:5 T [6]. The TPC is 4:2 m long and
4 m in diameter. It is an empty volume of gas in a
well-defined, uniform, electric field ofE135 V=cm:
The paths of primary ionizing particles passing
through the gas volume are reconstructed with
high precision from the released secondary elec-
trons which drift to the readout end caps at the
ends of the chamber. The uniform electric field
which is required to drift the electrons is defined
by a thin conductive Central Membrane (CM) at
the center of the TPC, concentric field-cage
cylinders and the readout end caps. Electric field
uniformity is critical since track reconstruction
precision is submillimeter and electron drift paths
are up to 2:1 m:

Fig. 1. The STAR TPC surrounds a beam–beam interaction region at RHIC. The collisions take place near the center of the TPC.

M. Anderson et al. / Nuclear Instruments and Methods in Physics Research A 499 (2003) 659–678660

Figure 2-6: The TPC
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May 12, 2009

TPC and BBC

11

Large acceptance Time Projection Chamber

• Reconstructs charged tracks via ionization 
signatures

• Event vertexing (~1mm resolution)

• Charged track vetoing

Beam-Beam Counters

• Scintillating tiles

• ±374 cm on center of STAR

• 2.1 < |!| < 5.0

• Coincident signals in inner 
BBCs signal a collision

Figure 2-7: Schematic of a BBC, showing the scintillator tiles

2.2.2 The BBC and ZDC

There are two of both the BBC and the ZDC, located on either side of STAR. Each BBC

is composed of segmented scintillator detectors surrounding the beam pipe located 374

cm from the interaction region. Each BBC provides full azimuthal coverage and has a

pseudorapidity range of 2.1 < |η| < 5.0. The BBC acceptance is roughly 53% of the

total proton-proton cross-section of 51 mb. BBC coincidences (signals from both the east

and west side BBCs) are used to measure the luminosity (both the total luminosity and

the relative luminosity between different spin patterns) and also as the basis for some

triggers [25].
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determined by practical, mechanical considera-
tions. Electromagnetic energy emission into this
region is predicted to be negligible so this
measurement is not emphasized in our design.
Since the spatial distribution of neutrons emitted
in the fragmentation region carries only limited
information about the collision, the calorimeters
are built without transverse segmentation.

The forward energy resolution goal was deter-
mined by the need to clearly resolve the single
neutron peak in peripheral nuclear collisions.
The natural energy spread of emitted single
neutrons [1] being approximately a 10% resolu-
tion of sE=E420% at En ¼ 100 GeV appeared
reasonable.

The limited available space between the RHIC
beams at the ZDC location imposes the most
stringent constraint on the calorimeter design. As
can be seen from Fig. 1, the total width of the
calorimeters cannot exceed 10 cm (equal to 1
nuclear interaction length ðLI Þ in tungsten). We
designed the ZDCs to minimize the loss in energy

resolution due to shower leakage, which can cause
fluctuation in the measured shower energy through
dependence on position of impact and random
fluctuations in shower development.

Finally, the ZDCs are required to withstand a
dose of $105 rad, which is the expected exposure
during several years of RHIC operation [3].

3. Simulations

We simulated shower development, light pro-
duction and transport in the optical components
using Geant 3.21 [4] for two basic sampling
calorimeter designs:

(1) Pb absorber with scintillator sampling, and
(2) Pb, Cu or W absorber, each with undoped

fiber optical ribbons in the sampling layer.

The ZDC sampling technique which we adopted
for this project, is sensitive to Cherenkov light
produced by charged shower secondaries in a

Fig. 1. Plan view of the collision region and (section A-A) ‘‘beam’s eye’’ view of the ZDC location indicating deflection of protons and
charged fragments with Z=A $ 1 downstream of the ‘‘DX’’ Dipole magnet.

C. Adler et al. / Nuclear Instruments and Methods in Physics Research A 470 (2001) 488–499 489

Figure 2-8: Diagram showing the location of the ZDCs

The ZDC are small hadronic calorimeters located about 18 m from the interaction

point: they provide a cross-check on the BBC luminosity measurements. Because the

ZDCs are located behind magnets which sweep charged particles away from them, they

measure only the production of neutral particles, as opposed to the BBCs which measure

mostly the impingement of charged particles. This allows them to provide a somewhat

independent luminosity measurement: however, the hit rate on the ZDCs is much lower,

which is why the BBCs are the primary luminosity detector. A ZDC is composed of three

modules, each of which consists of layers of tungsten and wavelength-shifting fibers, with

a total of roughly one nuclear interaction length. As with the BBC, coincidences are used

to measure both total and relative luminosity [9].

2.2.3 The BEMC

The BEMC, including the BSMD (which will be discussed in detail in the next section), is

the most important detector for this analysis. The BEMC is a lead-scintillator sampling

calorimeter, covering from -1 to 1 in η and the full azimuth in φ. It is located immedi-

ately outside the TPC, at an inner radius of ∼225 cm and an outer radius of ∼265 cm.

The calorimeter is divided into 120 modules, each covering 6 degrees in φ and 1.0 in η.

Each module is further subdivided into 40 towers – the tower being the basic unit of the
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Figure 2-5: BEMC with no other STAR detectors.

tag rare hard-scattering processes in STAR. The triggers used in this analysis will be

discussed in detail in section 3.2.

The BEMC is divided into equal sized halves, each ∼300 cm long along the beam

axis. Run 6 is the first RHIC Run in which the entire BEMC was commissioned

for data taking. Each half barrel is made up of 60 identical modules of dimension

∆η×∆φ = 1.0×6◦. Each module is further divided into 40 towers, each one projecting

towards the center of the STAR detector. A cross section of two towers side by side

can be seen in Figure 2-6. Two halves with 60 modules and 40 towers per module

yields 4800 towers in the whole BEMC. Each tower is broken up into an inner and

outer tower, separated by the BSMD, which will be discussed later. The inner tower

consists of 5 layers of lead and five layers of Kuraray SCSN82 scintillator. The outer

layer consists of 15 layers of lead and 16 layers of scintillator. Each layer is 5 mm

thick, except the first 2 scintillator layers which are 6 mm thick and make up the

pre-shower detector used for e−/γ separation. The BEMC sampling fraction fsamp. is

parameterized as [37]
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Figure 2-9: The BEMC, with all other detectors removed.

calorimeter – 2 in φ and 20 in η, for a total of 4800 towers, each .05x.05 in η × φ. The

towers are furthermore projective, with each tower pointing back to the interaction region.

Each tower consists of a stack of alternating 5 mm thick sheets of lead and scintillator,

with the BSMD located at a depth of roughly 5 radiation lengths (at η = 0). There are

20 layers of lead and 21 of scintillator, for a total of roughly 20 radiation lengths (again,

measured at η = 0: at higher values of |η| a particle may take an angled path through the

tower, which could change the amount of material it sees) [16].

Like any electromagnetic calorimeter, the BEMC measures the energy (and, with a

very poor resolution, the position) of electrons, positrons, and, most importantly for this

measurement, photons. An energetic photon will interact with lead by pair-producing: the

resulting electron and positron will then interact with lead by bremsstrahlung, producing

more photons that pair produce in their turn, and so on until the energies of the produced

particles drop to the point where ionization and the photo-electric effect start to dominate

instead and the shower dies out. As the energetic particles in the cascade pass through

the scintillator layers (being plastic, they are much less dense than the lead and so are

40



unlikely to induce either pair-production or bremsstrahlung), they produce scintillation

light, which is read out. The longitudinal size of the shower is governed by the radiation

length (X0): each lead tile is roughly one radiation length thick, giving a total of 20 (X0),

which should be enough to contain the whole shower for all the photons considered in this

analysis. The transverse size of the shower is governed by the Moliére radius RM – ∼1.6

cm in lead – making the tower roughly 9 Moliére radii in both the η and φ directions.

As on average, 90% of the shower energy falls within a cylinder of radius RM , the tower

should contain almost all of the energy of most particles that fall within it. The downside

of this large transverse size is, of course, poor position resolution, which is why the BSMD

is necessary [18].

The BEMC is not designed to measure the energy of hadrons. The nuclear interaction

length of lead is ∼17 cm, larger than the amount of lead (about 10 cm) in a tower: to have

any hope of fully containing a hadronic shower, the BEMC would have to be far larger than

it is. Instead, hadronic particles generally pass through the BEMC without showering, and

are referred to as minimum ionizing particles (MIP) because they deposit essentially the

minimum possible amount of energy due to ionization as they pass through. MIPs are

useful in calibrating the detector, as will be discussed in the next chapter.

Because the BEMC resides inside the STAR magnet, the light from the scintillating tile

is carried several meters by wavelength-shifting (WLS) fiber to the photomultiplier tubes

(PMTs) that read out the tower. The light from all the tiles in one tower is merged onto a

single PMT using a light mixer which ensures that the light from all the fibers shines on the

same part of the PMT photo-cathode, thus improving detector uniformity. Cosmic ray and

test beam results showed that approximately 3 photo-electrons were generated per MIP,

leading to an expected energy resolution of δE/E ∼ 14%/
√
E(GeV )⊕1.5%, though tower

non-uniformities and between-tower cross-talk make the actual energy resolution slightly

worse [16].
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Figure II.2.1-4 View of two EMC modules showing the phi gap.

The weight of each module is ~2116 lb. and the different components of the stack

are held in place by the friction that appears when a compressive force is applied between

the front and compression plates.   Extensive tests have been performed at WSU  to de-

termine the coefficient of static friction for every pair of materials in the stack.   The

minimum coefficient found was µ = 0.25 corresponding to the bond paper-scintillator in-

terface using Bicron scintillator material. Using the Russian scintillator material with its

rougher surface chosen for the EMC, we find  µ = 0.360.   Allowing a safety factor of

Figure 2-10: Cross-sectional view of two adjacent BEMC modules. The grey layers are
lead, the white scintillator. The BSMD is visible after the 5th lead layer.
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Table 2.1: BSMD Parameters

Depth (in BEMC) 5X0 at η=0
Occupancy (p+p) ∼ 1%
Chamber Depth 20.6 mm
Wire Diameter 50 µm
Gas Amplification ∼ 3000
Signal Length 110 ns
BSMDE Strip Width (Pitch) 1.46 (1.54) cm for |η| < 0.5

1.88 (1.96) cm for |η| > 0.5
BSMDP Strip Width (Pitch) 1.33 (1.49) cm
Strips per 2x2 Tower Group (Pod) 15
Strips per Module 300
Modules 120
Total Channels 36000

2.2.4 The BSMD

To provide the fine spatial resolution that is needed to distinguish between energetic neutral

pions and photons, there is a shower-maximum detector located at a depth of roughly 5 X0,

where the shower is expected to peak. The BSMD is a two-layer multi-wire proportional

chamber (MWPC) read out with two sets of strips, one (the inner) providing resolution in

η and the second (outer) in φ. There are a total of 36000 strips in the BSMD: each 2x2

group of towers, covering 0.1x0.1 in η × φ, contains 15 strips in each plane (referred to as

the η and φ planes, after the coordinate in which they provide discrimination). Each strip

extends over .1 in the opposite coordinate, while the strip pitch in each plane is roughly

.007 in η/φ, or ∼1.5 cm (see Table 2.1 for details) [16].

The BSMD gas is 90% argon and 10% carbon dioxide. Charged particles going through

the detector ionize the gas: the electrons produced drift under an electric field towards

anode wires. Close to an anode wire, they start to accelerate, resulting in additional ion-

ization and yet more electrons heading towards the wire. The resulting avalanche induces

an image charge on the pad, which is read out. A MIP traversing the barrel calorimeter
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Fig. 7. Schematic illustration of the double layer STAR BEMC SMD. Two independent
wire layers, separated by an aluminum extrusion, image electromagnetic showers in the -
and -directions on corresponding pad layers.

. . . .

. . . .
..... . ....
.

Back Strip PCB 150 strips are parallel to the anode wires

Cathode strips60 anode wiresEpoxyAluminum extrusion    30 cells on each side

Front Strip PCB    150 strips are perpendicular to the anode wires

. . . ... . . .

Fig. 8. Cross sectional view of the SMD showing the extruded aluminum profile, the wires
and cathode strips.

of the shower spatial distribution in the -direction. Each of these strips span 30
channels (30 wires). They have size of 0.1 radians in ( 23 , i.e. the module
width) and .0064 in ( 1.5 at low ). The other set of strips are parallel to the
wire channels of the aluminum extrusion. These strips are physically 1.33 wide
and have lengths 0.1 units in , while the wires are 1.0 units in .

Some important features of the double sided SMD design include improved relia-
bility, improved functionality in a high occupancy environments, improved hadron
rejection and separation, and simplified mechanical construction. The later
point is particularly significant. Single sided aluminum extrusions of the length
used in the STAR SMD are notoriously difficult to produce sufficiently flat and

11

Figure 2-11: Cross-sectional view of the BSMD

will leave a relatively small amount of ionization, but an electromagnetic shower, which

will consist of many electrons at its maximum, should leave a large and roughly gaus-

sian signal in both planes. Matching the signals in the two planes allows for a relatively

accurate determination of the position of the shower. Test beam data gives a position

resolution of 5.6/
√
E(GeV ) ⊕ 2.4mm for the η plane and 5.8/

√
E(GeV ) ⊕ 3.2mm for

the φ (the additional layer of material between the two planes degrades the φ resolution

somewhat). Unfortunately, the BSMD energy resolution is not as good, being roughly

δE/E ∼ 12%⊕ 86%/
√
E(GeV ) for the η plane and slightly worse for the φ. Additionally,

the dynamic range of the BSMD readout is relatively limited, leading to saturation of the

central strip at photon energies of ∼8 GeV and above.
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Fig. 7. Schematic illustration of the double layer STAR BEMC SMD. Two independent
wire layers, separated by an aluminum extrusion, image electromagnetic showers in the -
and -directions on corresponding pad layers.
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Fig. 8. Cross sectional view of the SMD showing the extruded aluminum profile, the wires
and cathode strips.

of the shower spatial distribution in the -direction. Each of these strips span 30
channels (30 wires). They have size of 0.1 radians in ( 23 , i.e. the module
width) and .0064 in ( 1.5 at low ). The other set of strips are parallel to the
wire channels of the aluminum extrusion. These strips are physically 1.33 wide
and have lengths 0.1 units in , while the wires are 1.0 units in .

Some important features of the double sided SMD design include improved relia-
bility, improved functionality in a high occupancy environments, improved hadron
rejection and separation, and simplified mechanical construction. The later
point is particularly significant. Single sided aluminum extrusions of the length
used in the STAR SMD are notoriously difficult to produce sufficiently flat and

11

Figure 2-12: Schematic of the BSMD, demonstrating how an electromagnetic shower
would appear in the two layers.
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Chapter 3

π0 Finding

The first step in a neutral pion measurement, identifying neutral pions in the dataset, is

intrinsically non-trivial because the π0 decays immediately into two photons. Therefore

finding neutral pions is actually a matter of reconstructing them from their decay products.

The fact that these products are photons adds an extra layer of difficulty: as neutral

particles, photons leave no tracks in the TPC or any other tracking detector. Therefore

there is no useful track pointing back to a vertex and so no way to tell if any two photons

are due to a single π0 or not. However, it is possible to overcome these difficulties using

the STAR BEMC and BSMD. Before we can use these detectors, however, we need to

determine what the electronic responses we get from the detectors actually correspond to

in terms of the particles.

3.1 Calibration

3.1.1 BSMD Calibration

Calibrating the BSMD is a tricky proposition since it is inside the BEMC. Calibrating

a detector essentially involves finding the factor of proportionality between the detector

output in ADCs and the deposited energy in GeV. For the BEMC, we can use charged
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particles whose momentum is measured by the TPC: as the particle should deposit all

of its energy in the BEMC, this makes it possible to relate energy and ADC (as will be

discussed in more detail in the next section). The situation isn’t so simple for the BSMD

because the particle only deposits a fraction of its energy in the detector, and there’s no

other detector to provide an independent measurement of the amount of deposited energy.

Theoretically, we could calibrate to the particle’s energy, rather than just the deposited

energy, but due to saturation effects such a calibration would start to become useless at

particle energies of 6-8 GeV. Instead, we use the fact that this analysis is not sensitive

to the absolute BSMD calibration. BSMD energies are used only to find the center of a

cluster through a weighted average of energy or to calculate (in some cases) the ratio zγγ

(which will be discussed below): in both cases, we are interested in a ratio of BSMD strip

energies and not an absolute BSMD strip energy. Therefore, all that is necessary for the

analysis is to perform a relative calibration, in which we equalize the response of BSMD

strips over a large block of strips (for the BSMDE, all the strips with i/10 < η < (i+1)/10,

for −10 ≤ i < 9; for the BSMDP, the whole detector). Any absolute calibration factor

applied for that block of strips to obtain a real energy value would simply drop out of the

ratios anyway.

The relative gain for a strip j in η bin i is defined as Avgi/Slopej , where Avgi is the

average slope of all strips in the η bin and Slopej is the slope of the strip. The slope defines

the response of the strip: thus, we are correcting all the strips in the η bin to have the

same response. The slope α is found by fitting the ADC distribution of a BSMD strip to

a falling exponential Ce−αx. However, precisely because we expect the response to differ

for different strips, we cannot use a fixed fitting range to find the slope. As the same ADC

range will correspond to different energy ranges for different strips, we would be comparing

the responses of the strips to different energy deposits. Instead, we find a fixed energy range

by integrating (or rather, since we have a discrete distribution, summing) from the end of

the ADC range to a fixed fraction of the total number of events in the sample to find the
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low and high ends of the fitting range (see below).

xhigh∑

1024

N(ADC) = .000045 · nEv

xlow∑

1024

N(ADC) = .00031 · nEv

Note that the calibration is not sensitive to the exact values of the parameters 4.5× 10−5

and 3.1 × 10−4. This allows to us to require that xlow always be at least five times the

pedestal RMS to avoid having the low end of the fitting range be on the pedestal itself,

which would distort the result of the fit (see Figure 3.2, for instance, where the fitting

range is shortened by this method). Figure 3.1 shows an example of how two different

strips could have quite different fitting ranges from this method.

Before we can begin fitting, there is one further step to be taken: we must identify

and remove strips that had significant electronic or other problems during the run. To do

this, we look at 500 GeV events from a set of runs that were carefully analyzed for high

quality. Because the pp500 run occurred before the pp200 run and no settings changed

in between the two runs, using 500 GeV events here should not present a problem. Two

separate datasets are required to find the status. In order to look at the tails of the strip

ADC distributions, we use events taken with the L2W trigger, which requires a high-energy

deposit in at least one BEMC tower (it was designed to look for W bosons via a high-pT

electron). However, because the BSMD has so many channels, it is usually zero-suppressed

to save space: only strips that are at least 1.5 σ above pedestal are written out. This makes

it impossible to QA the pedestal of strips using the L2W data. Instead, we use the small

fraction of events which are read out without BSMD zero-suppression. Since these events

are randomly selected, they lack the statistics that we would need to analyze the tails, as

well as the pedestals, of the ADC distributions. Therefore the high-energy and low-energy
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Figure 3-1: Two strips with significantly different fitting ranges: pedestal-subtracted ADC
values are shown in blue, with the red line being the result of the fit. The dashed green
lines show the location of three and five times the pedestal RMS. Note that since this data
is zero-suppressed, the full pedestal doesn’t appear in the ADC distribution.
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Figure 3-2: A strip with its fitting range artificially shortened to keep the low end off the
pedestal. See the caption for Figure 3.1 for more details.
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More Bad Strips: Shape Cuts
The other category of bad strips is those with pedestal RMS large

enough that the pedestal pushes into the fitting range. For some

strips, increasing the lower bound of xlow from 5*pedestal RMS to

7*pedestal RMS solves this problem, so for strips with pedestal

RMS>11.5 (corresponding to BSMD status bit 4) the lower bound is

increased:

For other strips, the pedestal eats up the entire fitting range:

To remove these strips, we look at three variables that roughly

characterize the shape of the pedestal.

Figure 3-3: A strip with its fitting range entirely on the pedestal.

response are examined separately.

Table 3.1 lists the tests applied to each strip: the first four to the pedestal, ensuring

that its location and width are in a reasonable range and that it has only one peak, and

the last three to the tail, ensuring that it exists and that it is not a “hot” strip, i.e. one

that is producing high amounts of ADC counts without a correspondingly large energy

deposition. As with the parameters determining xlow and xhigh above, the calibration is

not sensitive to the exact values of the parameters used in the table. Fatal tests are those

which mark a strip as bad if it fails them.

Additionally, there are several other tests which are applied to strips before their slopes

are calculated: these are listed in Table 3.2. While relative gains cannot be calculated for

these strips, they are still potentially useful in other applications, so they are given a bad

‘calibration’ status but not a bad ‘overall’ status. Dead strips are eliminated, as are strips

from modules which have too many bad strips, or in two cases have other problems which

were not caught by the standard QA. The other tests have to do with the shape of the

pedestal, and are largely intended to eliminate strips in which the entire fitting range is on

the pedestal (see Figure 3.3, for example). After all the status tests were applied, 30412,

or 84%, of the BSMD strips had failed none of the tests, and a further 1914 had failed only

one or more non-fatal tests, so that ∼ 90% of the strips were usable.
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Table 3.1: Status Tests

Status Bit Failure Condition Test Fatality Notes
1 |MPV| > 50 fatal MPV is Most Probable (ADC) Value
2 RMS < 1 or RMS > 15 fatal RMS calculated over range MPV±23
3 Integral Ratio IR < .95 fatal If RMS < 7.7:

IR =

∫MPV+23
MPV−23 (ADC)∫

all ADC values(ADC)

If RMS > 7.7:

IR =

∫MPV+8.5RMS
MPV−8.5RMS (ADC)∫
all ADC values(ADC)

4 RMS > 11.5 Not fatal RMS calculated as in bit 2
5 Par1 < .00003 or Par1 > .02 Not fatal

Par1 =

∫ 500
300 (ADC)∫

all ADC values(ADC)

6 Par2 < .00003 or Par2 > .02 Not fatal

Par2 =

∫ 800
500 (ADC)∫

all ADC values(ADC)

7 Par3 < .00003 or Par3 > .02 Not fatal

Par3 =

∫
ADC>800(ADC)∫

all ADC values(ADC)

Conditions 5, 6, and 7 all fail fatal If conditions 5-7 fail, the strip is bad.
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Table 3.2: Gain Status Tests

Status Bit Failure Conditions Test Fatality Notes
1

∑

ADC>50

N(ADC) < 10

fatal

2 Int2/Int1 < .07 fatal

Int1 =
100∑

50

N(ADC)

Int2 =
150∑

100

N(ADC)

3 Int3/Int2 < 1 fatal

Int3 =
50∑

0

N(ADC)

4 Int2/Int3 > 1 fatal
6 Bad module fatal A module is bad if it has

more than 50 bad strips; ad-
ditionally, modules 116e and
112 are marked bad. Bit 5 is
no longer used but bit 6 was
not changed to 5 for consis-
tency.

In order to maximize the number of events in our sample, we use a different data set

to calculate the slopes, namely events (from a good set of, again, 500 GeV runs) which

were taken with a minbias trigger, which simply takes a random sample of events. These

events will be zero-suppressed, but as the zero suppression only removes hits on the strip

pedestal it should not effect the slope calculation. It is worth noting that the calibration

is not particularly sensitive to the average slope in each η bin, as any deviation from the

“correct” average slope is just a multiplicative factor that will cancel out whenever we use
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the BSMD energies. The resulting relative gains for both BSMD planes are plotted vs. η

and φ in Figures 3.4 and 3.5: the BSMD crates, as well as every fifth BSMD module, are

clearly indicated, so that bad modules or areas of bad strips are visible.

3.1.2 BEMC Calibration

The BEMC tower calibration includes an absolute calibration in addition to the relative

calibration, since it is necessary to know the actual energy values of the towers. It proceeds

in two steps, starting with a relative calibration. While the BSMD uses the high-energy tail

of the ADC distribution to judge the response of each strip, the tower response is judged

from the lowest-energy part of the distribution, the MIP response. Test-beam results and

simulations indicate that the MIP peak should occur at roughly 20 ADC counts above

pedestal [31]. By looking at tracks with momentum of at least 1 GeV (measured by the

TPC) that are projected to enter and exit the same tower, if that is the only track entering

the tower and none of the neighboring towers have any energy, we can get a good sample of

MIP tracks, and obtain a MIP peak by fitting the region around 20 ADC to a gaussian. The

location of the MIP peak is used as a measure of tower response: the relative calibration

is then done for all the towers in a crate at a given η value. The presence or absence of the

MIP peak is also used to determine tower status: if there is no MIP peak, the tower is not

usable.

The absolute calibration is done using electrons and positrons. Electrons can be identi-

fied using the TPC: the dE/dx values for an electron are significantly different than those

for a MIP (usually a charged pion). For each group of towers, the value of electron E/p is

plotted for all the electrons that fall into the towers (using the nominal calibration which

assumes that the maximum ADC corresponds to 60 GeV), after the energy has been cor-

rected by the previously measured relative gain and by a factor derived from simulation

to account for loss of energy in the material between the TPC and the BEMC and into

the space between the towers. The absolute calibration factor is then the correction which
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Figure 3-4: BSMDE Relative Gains
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Figure 3-5: BSMDP Relative Gains
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Figure 3-6: Cartoon of the first stage of BSMD clustering: green strips are seed strips,
red strips are not added to clusters, boxes represent the clusters that emerge from this stage.

needs to be applied such that the peak of the E/p distribution for each group of towers is

at 1. The product of the relative and absolute calibrations for each tower is that tower’s

calibration factor [31].

3.2 BSMD Clustering

Photons leave signals only in the STAR calorimeter. The towers themselves are too large

for our purposes: once a π0 is sufficiently energetic, both of its decay photons will fall in

the same tower. However, the photons should also deposit energy in the BSMD, and we

can use this to identify and separate photons up to a reasonably high energy.

Figure 3.6 shows an example of how the BSMD clustering process works. It starts

with one BSMD plane (clustering is done separately in each layer). A BSMD plane can be

thought of as a giant cylinder: if the cylinder is “unrolled” it becomes a rectangle, divided

into rows (the η plane, or the BSMDE for η) or columns (the BSMDP), which are then

further divided into strips. Clustering starts by finding for each row or column all the peak

strips, defined as strips that have good status, more than 100 ADC of deposited energy
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(all ADC values quoted are those obtained after the relative calibration discussed above

is applied), and have more energy than the strips to either side of them (strips with bad

status, or dead strips, are taken to have no energy). Then, for each peak strip, starting

from the most energetic, a cluster is constructed by adding strips to both sides of the

cluster until one of three stop conditions is reached: either the strip that would be added

is dead/has fewer than five ADC of deposited energy, has more energy than the strip that

was just added, or would make the third strip on that side of the cluster (so that a cluster

has a maximum of five strips: in almost all cases, that is enough to catch the vast majority

of the cluster’s energy).

The perfect case can be seen on the left of Figure 3.6, where a nice five-strip cluster

is formed, leaving off only two strips that have very little energy. However, in most cases

this is not seen: even cases where there are no problems reconstructing the cluster usually

don’t have the full five strips, and there are many possible problems that can arise in

photon reconstruction. For one thing, a photon may fall such that its shower shares energy

between two columns or rows of a BSMD plane: this is dealt with by looking for clusters

that are in adjacent rows or columns and are quite close together and merging them.

Although merging sounds quite final, it is actually merely the forming of a hypothesis

that two clusters are from a single photon: a new cluster is created, but the two original

clusters are maintained. Merging can also happen within a row or column: if two clusters

are separated by a dead strip that lies between their peaks, as in the center of Figure 3.6,

then they may also be merged. And if a cluster containing just one strip lies adjacent to,

or separated by just one empty strip from, another cluster, the two will also be merged.

Finally, we have the case that is shown on the right of Figure 3.6, in which two clusters

are separated by a single strip, but that strip is not dead and has energy. In this case,

the two clusters could be from a single photon that merely had a strip that was expected

to have a low deposited energy value fluctuate high, or from two photons that are quite

close together. The former forms one of the backgrounds that will be discussed in the next
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chapter: the latter is dealt with by assigning part of the energy of the strip to each cluster

(in proportion to the amount of energy in the peak strip).

A cluster has two important properties: the total amount of energy in its strips, and its

location. For BSMDE (BSMDP) clusters, the cluster’s position in η (φ) is just the energy-

weighted average of the positions of the strips it is made from. As all the strips making up

the cluster are at one constant value of φ (η) for clusters in the BSMDE (BSMDP), the

cluster’s location in φ (η) is the just that constant value. The exception is the case when

a cluster is composed of two clusters merged across a row or column, when the position

in φ (η) is just the energy-weighted average of the center positions of the two rows or

columns. The energy and location are used in the next step, which is combining clusters in

the BSMDE plane and clusters in the BSMDP plane to form photon candidates. Clusters

in the two planes are combined only if they are within .1 in η−φ and if they are located in

the same pod (a pod being defined as a 2x2 group of towers that share the same group of

15 strips in both BSMD planes). Additionally, the clusters are combined only if the ratio of

their energies if between .25 and 4. More precise energy matching is impossible due to the

poor energy resolution of the BSMD: Figure 3.7 plots the energy deposited in the BSMDE

plane (as given by the GEANT simulation of the detector) against that deposited in the

BSMDP plane for simulated single-electron events (an electron should deposit its energy

in the BSMD planes in a manner very similar to a photon), showing that the correlation

is too poor to support anything stricter. A photon candidate’s location is simply the η

location of its BSMDE cluster and the φ location of its BSMDP cluster.

Once we have photon candidates reconstructed, two cuts are imposed on them. The

first of these is the charged track veto. Electrons, and charged pions that happen to shower

in the BEMC (which are just as common, if not more so, than electrons, since charged

pions are produced in vastly larger quantities) would produce BSMD clusters that would

mimic that of a photon: we dispose of these spurious photons by discarding the photon

candidate closest to a charged track, if it is within .045 of that track in η−φ. Additionally,
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Figure 3-7: GEANT deposited energy (in GeV) in the BSMDE plane vs. GEANT de-
posited energy in the BSMD plane for simulated electrons.

to avoid having to deal with detector edge effects, any photon candidate with |η| > .95 is

discarded.

Finally, because we have no way of associating photon candidates with each other, all

possible combinations of photon candidates are taken to form π0 candidates.

3.3 π0 Candidates

For the π0 candidates, it is necessary to take the BEMC towers, which we have to this

point ignored, into account. The only way to evaluate the quality of a π0 candidate is by

calculating its invariant mass: the closer this is to .135 GeV, the better the candidate (with

the proviso that we expect considerable width in the invariant mass distribution). The π0

invariant mass is calculated from the following equation:

minv = Etot ∗ sin(θ/2) ∗ zγγ

where Etot is the pion energy, θ is the opening angle of the decay, and zγγ is the energy

asymmetry between the two decay photons, defined as
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zγγ =
|Eγ,1 − Eγ,2|
Eγ,1 + Eγ,2

Invariant mass is usually calculated directly from the 4-vectors of the decay particles: this

(entirely mathematically equivalent) method was chosen because it isolates the problem of

assigning energy to the decay photons into one piece of the calculation, zγγ .

The opening angle θ can be determined from the positions of the two photon candidates

and the position of the collision vertex. The other two elements of the invariant mass are

more difficult to determine, however: for them, it is useful to sort π0 candidates by the

topology of their decay in the BEMC.

3.3.1 Decay Topologies

Figures 3.8-11 shows examples of each of the four decay topologies we deal with. In each,

the lines in the background represent BSMD strips, in both planes; the orange blobs are

the decay photons; and the green bands represent the BSMD clusters that result from the

photons depositing BSMD energy (though this shouldn’t be taken too literally: clusters

will often have more than the two or three strips depicted here, and no merged clusters are

shown). The easiest case to deal with is that of Figure 3.8. Here the two decay photons

fall in non-adjacent towers. This means that they are well separated, so that in this case

the total pion energy is calculated as the sum of individual photon energies, with each

photon’s energy being the energy of the highest-energy 2x2 group of towers containing the

tower that the photon candidate falls into (the “struck tower”). Note that for this purpose,

towers containing photon candidates are treated as if they had zero energy, to avoid (as

far as possible) including energy deposited in the BEMC by other particles: this exclusion

of towers containing photon candidates (except for the struck towers, of course) in the

energy calculation is done for all decay topologies. Additionally, the energy is corrected

for the case in which the two 2x2 tower groups overlap to avoid doublecounting. The zγγ
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Figure 3-8: Cartoon of a π0 with its decay photons in two non-adjacent towers. The
orange blobs represent the photons, the blue lines the BSMDP strips, the red lines the
BSMDE strips, and the green bands the BSMD clusters (horizontal ones in the BSMDP
plane, vertical ones in the BMSDE plane).

is calculated using the energies of the struck towers.

The case of Figure 3.9 is a little more complicated: here, the photons are still in different

pods but are in adjacent towers, which means that they are too close to make it feasible to

calculate the energy of the photons separately. Additionally, there are now two subcases

to consider: the first is that of the figure, in which the towers are directly adjacent, and

the second, not shown, is when the towers only touch at a corner. In the first subcase,

the energy of the pion is taken to be the sum of the energies of the struck towers and

that of the two highest-energy towers of the ten that form the outside of the 3x4 (or 4x3)

group of towers immediately surrounding the two struck towers. In the second subcase,

the energy is that of the struck towers, plus the energy of the other two towers in the 2x2
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Figure 3-9: Cartoon of a π0 with its decay photons in adjacent towers that are in different
pods. The orange blobs represent the photons, the blue lines the BSMDP strips, the red
lines the BSMDE strips, and the green bands the BSMD clusters (horizontal ones in the
BSMDP plane, vertical ones in the BMSDE plane).
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Figure 3-10: Cartoon of a π0 with its decay photons in adjacent towers in the same pod.
The orange blobs represent the photons, the blue lines the BSMDP strips, the red lines the
BSMDE strips, and the green bands the BSMD clusters (horizontal ones in the BSMDP
plane, vertical ones in the BMSDE plane).

group (assuming, as always, no photon candidates). Finally, to this energy is added the

energy of the two highest-energy of six towers, three from each of the 2x2 groups of towers

that contains one of the struck towers and extends away from the other struck tower. As

in the previous case, zγγ is calculated from the struck tower energy.

From the point of view of calculating the energy and zγγ , the case of Figure 3.10, in

which the two photons fall in the same pod but different towers, is much the same as Figure

3.9. There are two subcases, one in which the struck towers are diagonally adjacent and

one in which they are not (cases a and c in the diagram are really the same), which are

treated the same way as the subcases in Figure 3.9 are, and the calculation of zγγ does not

change. However, the fact that the photons fall in the same pod means that there will be
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Figure 3-11: Cartoon of a π0 with both its decay photons in the same tower. The or-
ange blobs represent the decay photons, the blue lines the BSMDP strips, the red lines the
BSMDE strips, and the green bands the BSMD clusters (horizontal ones in the BSMDP
plane, vertical ones in the BMSDE plane).

ghost pion candidates, as will be discussed in the next section.

Finally, there is the case of Figure 3.11, in which both photons fall in the same tower.

The energy of candidates of this decay type is defined as the energy of the struck tower

plus the energy of the two highest-energy of the eight towers that make up the rest of the

3x3 group of towers centering on the struck tower. Additionally, the way in which zγγ is

calculated clearly has to change: with only one struck tower for both photons, it is not

possible to use the struck tower energy as a stand-in for the photon energy. Instead, the

energy deposited in the BSMD planes is used. For reasons that will be explained in the

next section, rather than summing the BSMDE and BSMDP energies of the photons and

using them to calculate zγγ , we calculate separate zγγ values for each BSMD plane and
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then take their geometric mean, so that

zγγ =

√
|Eη,1 − Eη,2|
Eη,1 + Eη,2

∗ |Eφ,1 − Eφ,2|
Eφ,1 + Eφ,2

Note that, in the case where the two photons share a cluster in one of the BSMD planes

(which is not uncommon: because a strip extends over the entire width of two towers,

two photons at more or less the same value of η or φ in the same tower will deposit all

their energy in one plane into the same few strips), the zγγ is calculated using only the

energy deposited in the other BSMD plane. Because of the poor energy resolution of the

BSMD, the correlation between the BSMD energy and the particle energy is not expected

to be particularly strong, making this a less than ideal method of measuring zγγ for any

individual pion. However, overall it should not have any negative effect on the measurement

beyond widening the mass peak.

3.3.2 Ghost Candidates

The ghost π0 candidates – so called because they are purely a detector effect, rather

than resulting from background, flaws in the π0 reconstruction algorithm, or even detector

problems – arise from the fact that BSMDE(P) strips extend over two towers, and thus 15

strips in the BSMDP(E) plane, in the φ (η) direction. In the situation of Figures 3.10 and

3.11, when both decay photons fall in the same pod, finding a photon candidate essentially

means looking for the intersection of a cluster in the BSMDE plane with one in the BSMDP

plane. But due to the length of strips in the opposite direction to their plane, the BSMDE

cluster from one photon will intersect not only its own photon’s BSMDP cluster, but

also with that from the other photon’s BSMDP cluster. The result is that two photon

candidates becomes four. And since pion candidates are obtained combinatorially from

photon candidates, the original single π0 gives rise to six π0 candidates. Since same-pod

decays become dominant at higher energies, as the opening angle shrinks, this threatens
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to drown the actual data in ghosts.

In the diagonal (b) subcase of Figure 3.10, there’s a fairly easy way to deal with the

ghosts. In this case, each photon candidate falls in its own BEMC tower: therefore, in

almost all cases the two real photon candidates will be the pair that fall in the towers

that have more energy. In particular, by removing any diagonal same-pod π0 candidates

whose struck towers have less energy in them then in the other two towers of the pod,

we can eliminate the ghosts pretty well. Unfortunately, in the other same-pod cases the

coarse-graining of the towers means that this options is not available.

Instead, we have to use the distinctive rectangular shape of the same-pod decay to

distinguish ghosts from real candidates. Four of the ghost candidates will be “edge” can-

didates: that is to say, they will be made from photons that are two adjacent corners of

the decay rectangle, or, to put in a way that is easy for an algorithm to check, their decay

photons will share a cluster in one of the BSMD planes. Therefore, such a π0 candidate

will make up three sides of the rectangle, with two clusters in one plane and one cluster in

the other. We cannot discard this candidate simply on suspicion, though, since it’s possible

that this is one of those cases in which both photons simply happen to overlap in one of the

BSMD planes. Instead, we look to find the fourth side of the rectangle: in practice, this

means if the π0 candidates’ decay photons share a cluster in the BSMDP plane, checking

to see if there exists a photon candidate made up of one of the π0 candidate’s BSMDE

clusters and another BSMDP cluster. If so, we have constructed the full rectangle, and

hence in almost all cases the candidate we are dealing with is a ghost candidate. It’s

possible, of course, that the cluster that should be there in the opposite plane isn’t: if

one of the photons is fairly low energy, or the BSMD plane doesn’t respond as strongly as

expected, it may be that the peak strip of the cluster is too low energy and so the cluster is

not reconstructed (if the shower deposits its energy in two strips evenly, for instance, you

could be left with two strips at roughly 90 ADCs and no reconstructed cluster). To prevent

ghosts of this type from slipping by the cuts, a list of peak strips between 50 and 100 ADCs
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is maintained, and we check to make sure that such a peak could not be responsible for a

cluster that would complete the rectangle.

Unfortunately, even after eliminating the edge ghost candidates, we are left with two π0

“diagonal” candidates, one of which is real and one of which is not, and there is absolutely

no way to distinguishing between them. In this case, we cut the Gordian knot by not

trying to distinguish between them. If the candidate is a same-pod different non-diagonal

tower decay, or a same-tower decay, the total energy of both diagonal candidates will be

the same. Their opening angles will also be essentially the same (bar a small difference due

to non-zero vertex z position). And the zγγ will also be the same for both candidates: if

they don’t fall in the same tower, each has the same struck tower energies (interchanging

the two tower energies in the zγγ equation doesn’t change anything), and if they do, then

thanks to our use of the geometric mean of the two plane zγγ ’s to define the same-tower

zγγ , the two candidates will still have the same zγγ . As both candidates are constructed

from the same two BSMDE and BSMDP clusters, they will have the same two BSMDE

and BSMDP energies, and so the same zγγ in each BSMD plane. Thus we can expect

the two diagonal candidates to have the same invariant masses, in which case there is no

particular reason to try to figure out which is the ghost: we simply discard one and keep

the other.

3.3.3 General Cuts

Once the ghost candidates have been eliminated, some further cuts are applied (see Table

3.3 for the complete list). The first are to the photon candidate’s struck tower(s), which

must both have had good status during the run. Additionally, we require that each photon

candidate’s struck tower have at least .25 Gev of energy (bearing in mind that a tower’s

energy is set to zero if its ADC is less than three σ above pedestal or if it has fewer than

8 ADC).

For the photon candidates themselves, it’s necessary to test to make sure that no
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Figure 3-12: Probability for a pion to decay with some opening angle (actually sin(θ/2),
which goes into the invariant mass calculation) and pT (in GeV) combination. The red
rectangle in the lower left shows the region that is excluded by the cut.

photon candidate containing a cluster that is the result of a merger has been combined

with a photon candidate that contains one of the clusters that were merged (the parent

clusters). Clearly, either the merged cluster is real, or the parent clusters are, but both

of them cannot be, and so such a candidate is unphysical. Furthermore, once the π0

candidates have been constructed we have to decide for each case in which two clusters

were merged whether the merger was justified (because, again, candidates that include a

merged cluster and candidates that include the merged cluster’s parents cannot both be

correct). This is done by comparing a π0 candidate containing a merged cluster with the

π0 candidate(s) that are identical, except that the merged cluster is replaced with one of

its parent clusters. If the invariant mass of the candidate containing the merged cluster

is closer to .135 GeV than the geometric mean of the invariant masses of the candidates

containing the parent clusters, then the candidate with the merged cluster is kept and the

others dropped: if not, the candidate with the merged cluster is dropped and the others

kept.

We can also use the relationship between energy and opening angle to impose a cut.

Figure 3.12 shows a plot of sin(θ/2) vs. pT for simulated π0 decays: the red rectangle
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Figure 3-13: π0 candidates from data with pT > 4 GeV and decay photons in non-adjacent
towers. The η peak is clearly visible on top of the combinatorial background.

in the lower left-hand corner, where pT < 8.5 GeV and sin(θ/2) < .01, is excluded (the

discussion of the split-photon background in the next chapter will have more detail about

this cut). Additionally, we can apply a somewhat cruder but quite useful cut using the decay

topologies, as sorting by decay topology is similar to, if not exactly the same as, sorting by

opening angle. Figure 3.13 plots the probability of a π0 decaying in each of the four decay

topologies vs. pT . As expected, while non-adjacent tower decays are dominant at low pT ,

the probability of this decay mode drops dramatically as pT increases: in particular, above

pT of 4 GeV, π0 candidates with this decay topology are almost all background (see the

discussion of combinatorial background in the next chapter for more detail), with some η

mesons, which can also decay to two photons, mixed in (Figure 3.14 shows the invariant

mass distribution for these candidates, with the η peak clearly visible around .5 GeV). On

the other hand, same-tower decays, which are dominant at high pT , drop to nothing at

lower pT : below pT of 6 GeV, same-tower decays are practically nonexistent, and any such

candidate is almost certainly background. Therefore, both categories of candidates can be

discarded, although they will still be useful when calculating the final ALL result.

70



Thu Mar 29 01:15:25 2012 Invariant Mass (GeV/c^2)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

310!
spdinvmspdinvm

Figure 3-14: π0 candidates from data with pT < 6 GeV and decay photons in the same
tower.

Table 3.3: π0 Candidate Cuts

Cut Explanation
Photon struck tower status=1 The struck tower has no electronics or other issues
Photon struck tower energy> .25 There is energy in the tower; no very-low-energy photons
pT > 8.5 || sin(θ/2) > .01 Eliminates some split-photon background
pT > 6 || decay topology> 0 Eliminates some split-photon background
pT < 4 || decay topology< 3 Eliminates some combinatorial background and all η mesons

71



THIS PAGE INTENTIONALLY LEFT BLANK

72



Chapter 4

Measuring ALL

In Chapter 1, ALL was defined as

ALL =
σ++ − σ+−
σ++ + σ+−

From an experimental point of view, though, this definition is not very useful. Experimen-

talists measure yields (of neutral pions, in this case): to convert the yield to a cross-section

requires multiplying it by efficiencies, absolute luminosities, etc. The beauty of an ALL,

however, is that it is a ratio. Therefore, almost all of these scale factors, which affect both

σ++ and σ+− equally, will cancel out of the numerator and denominator. Not only that,

but a number of important systematic errors associated with these scale factors will also

drop out. Just as with the efficiencies and other such terms, these systematics, such as the

BEMC calibration uncertainty, affect both the like- and opposite-sign cross-sections in the

same fashion and so do not affect their ratio.

Once all the terms that appear in both σ++ and σ+− have been canceled out, we are

left with the experimental definition of ALL:

ALL =
1

P1P2

N++ −RN+−

N++ +RN+−
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Here, the Pi’s are the polarizations of the two beams (measured per fill); R is the relative

luminosity (the ratio of the number of times the beams were collided with the same helicities

to the number of times they were collided with opposite helicities); and N++ and N+− are

the π0 yields for the same and opposite beam helicities, respectively.

A brief overview of the chapter is in order. The central issue involved in calculating

N++ and N+−, finding the actual π0’s, was discussed in the previous chapter, but we still

need to determine which events we want to use to look for π0’s, which will be covered in

section 4.1, and how many of the π0’s we find are actually background events, which will be

discussed in section 4.2. Section 4.3 will cover the measurement of the relative luminosity,

and section 4.4 that of the polarization. Once all the pieces are in place, we can calculate

the ALL: however, we must also check that there are no false asymmetries in place (section

4.5) and check for systematic errors that cannot be dismissed thanks to ALL being a ratio

(section 4.6). Finally, everything will be put together in section 4.7.

4.1 Event Selection

Not all of the p-p collisions at
√
s=200 GeV that STAR recorded in 2009 are usable for

this analysis. In many cases, a hardware problem renders the events unusable. In some

cases, there may have been a problem with one of the detector subsystems which prevented

enough information from being recorded to allow us to successfully search for π0’s. Even if

STAR was performing well, the polarization measurement may be bad, or the spin pattern

may not have been recorded correctly, making it impossible to use any pions that were

found in the ALL calculation.

Furthermore, we only expect a small fraction of the collisions in STAR to actually

produce a π0 in our momentum range of 4 GeV-21 GeV. A particle with such a relatively

high pT will only be produced if there is a hard parton-parton collision, but most proton-

proton collisions are glancing or elastic, with no hard scattering and so no high-pT particles.

STAR uses triggers to identify collisions with hard parton scattering, producing datasets
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Figure 4-1: Vertex z distribution of events in our sample.

which should be enriched in π0’s when compared to the full set of all 2009 pp200 events.

In addition to selections based on run and trigger, discussed in detail below, there is one

additional criterion imposed on events, having to do with the event’s vertex position. By

extrapolating TPC tracks backwards to a common origin, we can calculate the z position

of the vertex. While the beam interaction point is nominally at the center of STAR, the

beams are of course not simple points, and proton-proton collisions actually take place

over a large range of values of z, as show in Figure 4.1 (the z axis is taken to be along the

beamline). The further away the collision is from the center of the detector, the less likely

that both decay photons from any π0 that were produced will actually fall in the detector:

therefore we require that the decay vertex fall inside the TPC.

4.1.1 Run Selection

The first stage of the run selection involves performing a QA check on the performance

of each detector subsystem. Detector performance is not steady: detectors are liable to

electronics failures, high-voltage trips, and other problems. If the performance of one or
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more of the key detectors for the BSMD analysis for a given run is sufficiently degraded,

the run is discarded. For the BSMD, the key detectors are the TPC, the BEMC, and the

BSMD: if a sufficiently large portion of any of those detectors was out of commission, the

run is not used.

Additionally, it is necessary that we know the spin pattern, relative luminosity, and po-

larization for each run in the analysis. The spin pattern should theoretically be recorded for

every event: however, if the pattern is off for one event, that may propagate to subsequent

events, causing entire runs to be rendered useless. The relative luminosity measurement is

also dependent on the spin pattern being recorded correctly: however, it is also necessary

that the BBCs be functioning, so if there is a serious problem with the BBCs then the run

is not usable. Finally, if there is no polarization value then the run cannot be used. This is

mainly a problem for short fills, in which there is not time to make at least two polarization

measurements with the beam at flattop. Runs from such fills have to be discarded.

4.1.2 Triggers

A trigger is a set of conditions that an event must meet for it to be written to disk. The

simplest possible trigger is a minbias one, which randomly selects some fraction of the total

events. However, most minbias events will be physically uninteresting. In order to save disk

space and analysis time, triggers are designed to accept only events that we are actually

interested in analyzing. Generally speaking, this involves looking for a large deposit of

transverse (to the z axis) energy in the calorimeter: lots of energy in the transverse plane

means a hard scatter in the original collision (since otherwise all the energy is along the z

axis) and an interesting event.

This analysis uses two types of triggers. The first are high-tower triggers, which look

for energy deposits from single particles via a large amount of energy in a single tower or

a small area around a tower: these are well suited for our purpose, as most π0’s in our

pT range fall in one tower or two adjacent towers. The BHT3 trigger simply requires that
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some tower in the BEMC have at least 6 GeV. The L2γ trigger – the “L2” in the name

indicates that it is a level two trigger, and so uses a more sophisticated algorithm – requires

only 4.5 GeV in the tower, but at least 6 GeV in the 3 × 3 cluster of towers centering on

the tower. Events that pass one of these triggers are quite rare and so, paradoxically, make

up the largest part of our dataset, as we are careful to accept all of them that arise.

The second type of trigger used are jet triggers, which look for energy deposits from

a number of particles traveling in roughly the same direction, the signature of a jet (see

below for a more detailed explanation of jets). The main JP1 trigger looks at the twelve

fixed jet patches (from which come the trigger’s name) in the BEMC, each 1.0 × 1.0 in

η×φ and containing 400 towers, and requires that one have at least 5.4 GeV. There is also

a level two jet trigger, L2Jet, which has a more sophisticated sliding jet patch (though it is

the same size as the fixed jet patches) and a higher energy threshold (there were actually

two energy thresholds, 6.5 GeV and 6.8 GeV, which were used at different times during

the 2009 run). Because events that pass the jet trigger are quite common, a prescale is

applied to them, meaning that only one out of every n JP1 triggered events is accepted (n

varies from 5 to 12, depending on the JP1 trigger rate at different points during the run):

therefore jet triggers are outnumbered by high-tower triggers in our dataset, as can be

seen in Figure 4.2. While these triggers are not quite as useful as the high-tower triggers,

they are still much more likely to yield pions than the minbias triggers. One additional

cut is imposed on pion candidates from jet trigger events: they must be able to pass the

jet trigger all by themselves, so as to reduce sub-leading pions that are created from jet

fragmentation.

4.2 Backgrounds and Fits

Once we have a sample of neutral pion candidates from data events, we need to make

sure that we understand the composition of our data. We expect to get three types of

candidates, signal candidates (i.e. those corresponding to actual pions) and candidates

77



Tue Apr 10 21:18:40 2012 Pion Pt (GeV/c)
4 6 8 10 12 14 16 18 20 22 24

310

410

510

Pion Pt Spectrum

Total
bht3
l2bgamma
jp1
l2jet

Pion Pt Spectrum

Figure 4-2: pT distribution of events that passed each trigger (with the overall distribution
in black).

from two categories of irreducible background (there will also be η mesons, but since their

mass is 547 MeV we do not expect them to contribute at all in our mass window). To

verify that this is indeed what we see in the data, we model the invariant mass distribution

we expect for all three types of candidates and then attempt to fit the data invariant mass

distribution to a sum of the three component distributions (by allowing the normalizations

of the latter to vary). This fit will not only confirm our understanding of the data but will

also allow us to calculate what fraction of the data is actually background.

4.2.1 Combinatorial Background

The first and largest type of irreducible background is the combinatorial background. This

arises from the fact that we have no way to tell whether two photons arose from a π0 decay

or not and so are forced to create pion candidates by combining each photon with every

other photon. The result, of course, will be that numerous pion candidates will be formed

which consist of photons from one π0 combined with photons from a different π0 or even

with photons that have nothing to do with any π0.
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We can model this background of pion candidates formed from uncorrelated photons

using a data-driven process known as event mixing. In order to model a background

from combining uncorrelated photons, we need groups of uncorrelated photons to com-

bine. While it is not possible to determine whether or not photons are correlated within

events, it’s quite clear that photons from two different events cannot possibly be corre-

lated. Therefore we can model the combinatorial background by combining photons from

one event with photons from another.

It’s not quite that simple, though. First, we need to ensure that the events have vertex

z positions that are sufficiently close to another. Combining a photon from a vertex at

z=50 cm with one from a vertex at z=-50 cm is just not feasible due to the impossibility of

determining the opening angle of the decay. Therefore, events are only combined if their

vertices are within 10 cm. Additionally, it is not entirely true to say that the combinato-

rial background arises from uncorrelated photons. The presence of jets in proton-proton

collisions introduces a degree of correlation that must be accounted for.

A jet is a group of particles traveling in roughly the same direction within a reasonably

confined space (STAR’s jet-finding algorithm, for instance, uses a radius of .7 in η−φ for its

jet cone). Jets are a common product of hard parton-parton scatterings. As was explained

in Chapter 1, one of the fundamental properties of QCD is that quarks and gluons can

never be observed by themselves, but are always confined within a hadron. As the parton

flies away from the collision, then, it attempts to hadronize by pulling quark-antiquark

pairs out of the vacuum. The result is that the parton fragments into a spray of hadrons

traveling outwards in a cone: i.e., instead of a quark or gluon, the detector sees a jet.

The important point for our purposes here is that the jet structure of an event clearly

introduces a degree of correlation. If two π0’s are both part of the same jet (or one is part

of the jet from one of the scattered partons and the other is part of the jet from the other

scattered parton) then we cannot say that their decay photons are entirely uncorrelated.

In order to account for this, we rotate events before they are mixed so that their jet axes
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Figure 3-6: Illustration of event rotating procedure undertaken in modeling the com-
binatoric background. Different events are rotated by ∆η and ∆φ to mimic the
underlying jet structure in a single event [27].

where

∆φ(∆η) = φ(η)2 − φ(η)1. (3.10)

Figure 3-6 shows a cartoon of this rotation procedure. To minimize error from detector

effects, only events with similar z vertices and similar jet axes are mixed. The result

is an invariant mass distribution for the background, which can then be normalized to

the high mass tail of the data where we expect only combinatoric events. An example

of the results of the mixing algorithm is shown in Figure 3-7. The model matches

the background shape well in the high mass region and in the region between π0 and

η peaks. The procedure for rotating jets in mixed events was devised by Oleksandr

Grebenyuk at NIKEF; more information can be found in [27].

The second background contribution, the “low mass” background, is an artifact

of inefficiencies in the detector and the clustering algorithm. For some small fraction

of photons, the clustering algorithm will fail for one of the BSMD planes, resulting

in an artificially split cluster. The algorithm will subsequently reconstruct two pho-

tons instead of one. These two photons will in turn be reconstructed as a single π0

candidate with an uncharacteristically low mass. The algorithm splits clusters for a
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Figure 4-3: Illustration of the event rotating procedure used in creating combinatoric
background events whose underlying structure is similar to that of actual events.

line up (where the jet axis is the axis on which the two partons from the hard scattering left

the collision). Because rotating STAR in η amounts to shifting it along the beam axis, the

more we rotate the less realistic the result will be: if we rotate by η of .5, for instance, fully

a quarter of the rotated event will fall outside of the actual detector. Therefore events are

only rotated if their jet axes are within .1 of each other in η. Rotation in φ simply amounts

to rotating STAR about the z axis so it presents no problem. Figure 4.3 illustrates the

result of rotating two events to align their jet axes [19].

Once the rotation has been done, photons from one event can be combined with rotated

photons from the other event to form pion candidates. An extra cut needs to be applied

here to ensure that the photons don’t get too close together. In a real event, two photons

that were within two strip widths in both planes of the BSMD would appear to be a single

photon: therefore, we must reject any combinatorial background candidates whose photons

are that close together. Once this cut is applied, the combinatorial background candidates

are treated in exactly the same fashion as the data candidates and run through the exact
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same cuts. The result is an invariant mass distribution that, as we will see, matches the

data quite well over the range where we expect the data to consist entirely of combinatorial

background events.

4.2.2 Split-Photon Background

The second type of irreducible background we expect to see arises from cases in which the

two photons that form the pion candidate are quite closely correlated, in that they are

actually the result of a single photon being split in two by the BSMD. As was discussed

in the section on BSMD clustering, clusters can be split in two main ways: either by dead

strips, or by secondary strips that fluctuate high (Figure 4.4 provides a cartoon of both

situations). The procedures for merging clusters attempt to compensate for these problems,

but they will not always be successful. For instance, if the secondary peak occurs two strips

away from the main peak, no merger will be made. Alternatively, in some cases fluctuations

in the value of zγγ – which will almost always be calculated using BSMD energies, as both

fake photons are likely to be in the same tower – could cause the merging hypothesis to be

rejected, even thought it is true. The angle-pT cut described in Section 3.3.3. will eliminate

many of the split-photon candidates, especially the ones that are split by a dead strip, as

they are often low energy – they are missing the energy of one photon – and low-angle – the

fake photons will be closer together than the real ones – but some will survive. Figure 4.5

shows the result of applying the opening angle-pT cut to both the data (in black) and the

simulated split-photon background (in blue): the low-mass peak in the data disappears,

but this is just due to a significant reduction in the amount of split-photon background.

Note that the split-photon background has been scaled by a number that emerges from the

overall data fit, as described below.

This background is modeled using single-photon simulations. Using GEANT, we can

generate events consisting only of one photon (and a few muons to provide a vertex). Then

these events are put through the pion finder: the resulting π0 candidates are used to model
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Figure 3-7: Mixed event simulation of combinatoric background (in green) compared
to data (in black). The “humped” shape of the mixed mass distribution is the conse-
quence of properly rotating the mixed events to mimic the underlying jet study. The
mixed event sample clearly matches the data in the high mass region and between
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Figure 3-8: Illustrations of artificial cluster splitting in the SMD. Red and green bars
represent energy responses of neighboring SMD strips. Statistical fluctuations and
missing strips can cause erroneous cluster splitting.
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as two separate clusters. The green strips and red strips represent different reconstructed
clusters.

the split-photon background [21].

4.2.3 Simulating the π0 peak

In addition to modeling our backgrounds, we also need to model the signal distribution.

At first glance, the obvious way to do this would be by using simulated single-pion events.

However, it turns out that this is not possible due to the movement of the pion mass peak.

In theory, the invariant mass distribution of the π0 candidates should peak at .135 GeV

in all pT bins, but in practice the peak location increases fairly steadily with pT . This

is partially due to detector and algorithm effects. The detector’s finite minimum position

resolution is one cause: since clusters must be separated by at least one BSMD strip width,

pion reconstruction is biased towards larger opening angles, and at higher pT values, where

the opening angles will tend to be smaller, this will tend to increase the mass peak. The

BEMC energy resolution will also tend to increase the mass. Because the π0 spectrum is

steeply falling, it is more significant when a π0’s energy is measured to be larger than it is

than if the energy is measured to be smaller than it is, and if the measured energy is too

high while the other parameters stay the same, the mass will be too large. These factors

should be the same in single-particle simulations as in full simulations or in data, but that
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Figure 4-5: Illustration of the effect of applying the cut in pT -opening angle space (here
for π0 candidates with 4 < pT < 6.5). The blue is the split-photon background, the black
is the data. The split-photon background has been normalized so as to produce the best
possible data-peak+background fit.

is not the case for the final contributor to the fact that the mass peak increases with pT ,

jet background. The kind of hard scattering events that produce high-pT pions are likely

to have greater total ET than lower-energy events. This means that there will be more

particles created in such an event, and so a greater likelihood that low-energy particles will

deposit part or all of their energy in the same tower(s) as our pion candidate, increasing

its energy and hence its mass. This phenomenon should be seen in full simulations of

proton-proton collisions, but it will not occur in single-pion simulations, and hence we

should expect that the pion mass peak in the single-pion simulations will be lower than

it is in data or full siimulations. Figure 4.6 shows that this is in fact the case: while the

data and full simulation mass peaks match each other quite well over a large pT range, the

single-pion simulation mass peak is smaller and growing more slowly.

Therefore, we must simulate the pion signal distribution using full simulations. But we

clearly cannot simply run these simulations through the pion finder and take the result as

our signal: the full simulations should contain the exact same backgrounds as the data.
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Figure 4-6: Location of the invariant mass peak (obtained from a gaussian fit) vs. pT for
data (black), full simulations (blue), and single-pion simulations (red).

Instead, we need some way to determine which of the π0 candidates we find are true pions.

Since in finding true reconstructed pions we are more concerned with purity (our signal

distribution must contain very little background, since any background present will disturb

the fit) than efficiency (we can afford to throw out pions if we’re not sure about them), we

can use a relatively crude method of identifying true reconstructed pions based on the fact

that in simulation we know everything about every particle produced in the event. For

each reconstructed pion candidate, we can calculate the distance between its decay photons

and the decay photons of each simulated pion from the simulated collision (taking the pair

of distances that has the smaller sum to be the correct one), and find the simulated pion

that the reconstructed pion is closest to. If, for this closest pion, the two decay photon

distances are both less than 0.02 (in η − φ) then this pion is taken to be a signal pion.

4.2.4 Fitting the Data to Simulation+Backgrounds

Finally, once we have invariant mass distributions for all three pieces of the data, we can

fit the data to them by allowing their normalization to vary. The result is shown for
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each pT bin in Figure 4.7: the data are in black, the simulated pion peak in purple, the

combinatorial background in green, the split-photon background in blue, and the fit in

red. Figure 4.8 plots (data-fit)/data, giving a better idea of the fit quality. While the fit

describes the data fairly well, there are clearly significant divergences from the data on

the shoulders of the peak, where the data is greater than the result of the fit. Because

this discrepancy on the shoulders of the π0 peak was also seen in the 2006 result, which

used an entirely different algorithm, we can be fairly confident that it is not an artifact of

the algorithm. Further investigation indicated that the problem does not lie only in the

simulation of the low-energy background, but persists in the simulation of the high-energy

component of the event. This strongly suggests that the issue has to do with the way

that the BSMD is simulated in GEANT. As we will use the results of the fit to calculate

the fraction of events that fall into the invariant mass region of interest that are actually

background, which will be important in determining the final result, it is necessary that the

data-simulation discrepancy be accounted for somehow. We will do so with an additional

systematic uncertainty: see the discussion of the fit systematic in Section 4.6.2.

4.3 Relative Luminosity

The relative luminosity R is defined as L++

L+− , where the L’s are the measured luminosity

for like-sign and opposite-sign helicity states, respectively. R is determined by the BBC’s,

which count the number of coincident signals (i.e., signals in both BBC’s) and combine that

with the preset spin pattern (which is set as the bunches are injected into the accelerator)

to determine the numbers N++, N+−, N−+, and N−− of each possible spin configuration.

A number of possible ratios can be constructed from these four quantities: the one we want

is

R3 =
N++ +N−−

N+− +N−+
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Figure 4-7: For each pT bin, the data invariant mass distribution (black) is fit to a sum of
the simulated pion peak (purple), the split-photon background (blue), and the combinatorial
background (green): the fit is in red.
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Figure 4-8: (Data-Fit)/Data as a function of invariant mass for each pT bin.
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Figure 4-9: Polarization for both beams plotted by fill.

It is calculated for every fill.

4.4 Polarization

The RHIC CNI and H-jet polarimeters were described in detail in Chapter 2. The CNI

polarimeters measure the polarization of both beams at the beginning of each fill and every

two hours or so during it. An average polarization is calculated for the entire fill and is

used for each run in the fill.

4.5 Single-Spin Asymmetries

Before calculating ALL, we must make a basic crosscheck by calculating the single-spin

asymmetries AL. These asymmetries are defined for the yellow and blue beams as

A
Y (B)
L =

1
PY (B)

N+ −RY (B)N
−

N+ +RY (B)N−
,
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where N+ and N− are the yields for the yellow or blue beam plus and minus helicity

configurations (averaging over the helicity configuration of the other beam) and the R’s

are relative luminosities (note that these are not the R3 that was defined in section 4.3 but

are instead the ratios of the positive to negative helicity configurations for the blue and

yellow beams). These asymmetries are parity-violating, as under the action of the parity

operator N+ becomes N− and vice versa, and since QCD is not parity violating, they must

be zero (it’s important to note here that ALL is not parity violating, as the parity operator

just transforms the two components of N++ and N+− into each other). If they are not

zero, that would suggest the presence of some outside source of asymmetry, which could

also contaminate the ALL measurement.

Rather than calculating a single AL for each beam for the entire dataset, we calculate

the two single-spin asymmetries for each run, which would allow us to see if any time-

varying asymmetry was present. The results are shown vs. run index (i.e. 1 is the first

run used in the analysis, 2 the second, etc.) in Figure 4.10, with the blue beam on the

left and the yellow beam on the right. Also shown on the plot is the result of fitting the

asymmetries to a constant value: that value, the statistical error, and the χ2/NDF of the

fit are shown on the plot. For both beams, the fit is consistent with zero, with a χ2/NDF

close to one.

4.6 Uncertainties

In terms of the quantities that we actually measure, ALL (in a pT bin j) is defined as

ALL,j =

∑
I PB,iPY,i(N

++
i,j +N−−i,j −Ri(N+−

i,j +N−+
i,j )

∑
I P

2
B,iP

2
Y,i(N

++
i,j +N−−i,j +Ri(N+−

i,j +N−+
i,j )

where the sum over i is the sum over the runs. This quantity has both statistical and

systematic uncertainties: we will deal with each in turn.
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Figure 4-10: Single-spin asymmetries plotted vs. run index and fit to a constant: left,
the yellow beam; right, the blue beam.

4.6.1 Statistical Uncertainties

The statistical uncertainty for ALL as defined above is given by, if Dj and Uj are the

denominator and numerator respectively for ALL in bin j,

σ2
ALL,j

=
∑

i

(
DjPB,iPY,i − UjP 2B, iP 2Y, i

D2
j

)2(N++
i,j +N−−i,j +R2

i (N
+−
i,j N

−+
i,j )).

But in the case where the asymmetry is small (as it is here), the numerator term can be

neglected and the error simplifies to

σ2
ALL,j

=
∑

i

(
P 2
B,iP

2
Y,i(N

++
i,j +N−−i,j +R2

i (N
+−
i,j N

−+
i,j ))

D2
j

.

In this form, the ROOT software package, which we use to calculate the final answer, will

propagate it correctly.

There is one further important point: we must take into account the presence of events
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Figure 4-11: Number of pions per event, by pT bin.

in which we find more than one pion in a given pT bin (see Figure 4.11). Under these

circumstances, to naively treat each pion as an independent event and calculate the result-

ing uncertainties using Poisson statistics as
√
N would be incorrect. For this analysis, we

follow [30] and increment each bin in our histograms only once per event, using a weight

equal to the number of pions in that bin in that event.

4.6.2 Systematic Uncertainties

There are four main systematic uncertainties to deal with. We expect the systematics to be

less significant than the statistical uncertainty, with the exception of the fit (which could

also be described as data-simulation) systematic.
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Trigger Bias

As discussed above, the data used in this analysis all comes from one of four triggers:

therefore, we must be alert to possible biases introduced by relying on these triggers. For

instance, events that result in a mid-rapidity jet which hadronizes with a strong electro-

magnetic component – i.e. events that pass the JP1 trigger – are more likely to be events

that contain a quark jet, since quark jets tend towards harder fragmentation than gluon

jets. This means that these events are more likely to have a quark in the hard scattering

process, and since quarks are more likely to be polarized than gluons, this may introduce

a bias into our ALL measurement. In order to estimate the size of the bias from this or

any other trigger effect, we use the Method of Asymmetry Weights [26].

The method involves making a leading-order Monte Carlo simulation of ALL using the

Pythia event generator. We can use Pythia to determine the partonic aLL (the ratio of the

polarized to unpolarized hard scattering cross-sections) of the process and then determine

an asymmetry weight for the event by sampling parton distribution functions as follows:

w =
∆f1(x1, Q

2) ∗∆f2(x2, Q
2) ∗ aLL

f1(x1, Q2) ∗ f2(x2, Q2)
.

The Monte Carlo ALL is then just the ratio of the asymmetry-weighted and unweighted

distributions. To determine the systematic uncertainty, we simply take the difference

between the Method of Asymmetry Weights ALL for all events and that for just those

events that pass a simulated trigger condition.

There are a few additional subtleties here. First, while the partonic aLL is calculable

and the quark PDFs, both polarized and unpolarized, and the unpolarized gluon PDF

have been measured reasonably well, the polarized gluon PDF has not been, and in fact

constraining it is the goal of this analysis. Rather than calculating just one pair of ALL’s,

then, we calculate three, each with a different version of ∆g(x,Q2). Based on past analyses,

it seems unlikely that the absolute value of ∆G is greater than .3, so we use two scenarios
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of ∆g(x,Q2) that give values of ∆G = .3 and ∆G = −.3 as an envelope (as calculated

by GRSV). Additionally, we calculate one pair of ALL’s based on the DSSV global fit

value of ∆g(x,Q2), that being the best global fit currently available. Then we take as

the systematic the largest value of the triggered-untriggered difference, regardless of which

∆g(x,Q2) scenario it came from.

Additionally, we have to be careful to ensure that the trigger mix in the simulations

matches that of the data. As discussed above, JP1 && !BHT3 triggered events, being

the most common, are heavily suppressed with a prescale during data-taking. No such

suppression is performed when events are being generated in simulation, though: as a

result, while such events make up only about 10% of our dataset, they are nearly half of

our simulation sample. In order to ensure that we are measuring the bias introduced by

the correct group of triggers, we weight the JP1 && !BHT3 events in the simulation so

that their ratio to the total size of the simulation sample matches the ratio seen in the

data.

Finally, it may be the case, especially in the higher pT bins, that the statistical errors

on the ALL difference are larger than the difference itself. In such a case, the value of the

statistical error will be taken as the systematic. As the trigger bias systematic uncertainty

turns out to be about an order of magnitude less than the statistical uncertainty, such an

approximation doesn’t really effect the final uncertainties.

Figure 4.12 shows the results of this calculation: the ALL differences and the statistical

error on the differences are shown in each pT bin for each ∆g(x,Q2) scenario. The numerical

values of the systematic are given in Table 4.2 below along with the other uncertainties.

Fit Systematic

The most important potential source of uncertainty in the measurement is that arising

from the problems with the fit of the data invariant mass distribution to the sum of the

two backgrounds and the simulated signal peak. Figure 4.8, which plots the difference
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Figure 4-12: Difference between triggered and untriggered ALL’s, with the latter calculated
from the method of asymmetry weights using different ∆g(x,Q2) scenarios, for each pT bin.
The ∆G = −.3 scenario is in black, the ∆G = .3 scenario is in red, and the DSSV scenario
is in blue.

between the data and the fit normalized to the data, clearly shows structure in the data-fit

difference. In particular, the fit consistently comes in below the data on the shoulders of

the pion peak across all the pT bins. The failure is most pronounced in the general region

from .15-.25 GeV.

As the data and fit match each other well at higher invariant mass where the combina-

torial background dominates, and the split-photon background is too small a contributor

to be responsible for this effect, the fit problems must be due to our failure to correctly

simulate the π0 peak. We can test this hypothesis by comparing the data directly to sim-

ulation, as the full simulation should have the same backgrounds as data present. And to

ensure the best possible modeling of the backgrounds, we use “embedding” simulations.

Embedding works by taking low-pT background from data and then adding to that our

simulations of whatever high-pT process we’re interested in (here, jet production, which

should produce plenty of π0’s, is used). Thus the interesting process is embedded in a
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data-driven background, which should give us a better grasp of the backgrounds. Figure

4.13 plots the data-embedding difference normalized to the data: as in the previous section,

JP1 && !BHT3 triggers have been reweighted so that the embedding trigger ratios are the

same as those in data. Additionally, since there is no fit to determine the normalization of

the embedding, it is scaled by a factor which equalizes the data and embedding integrals

over the invariant mass range .4-.5 GeV (i.e., a range where the combinatorial background

is dominant). The error bars are large due to the relatively smaller size of the embedding

sample (aggravated by the reweighting process, which, by giving half the sample the weight

of one-tenth of the sample, effectively cuts our statistics in half), but structures are clearly

visible around the pion mass peak, strongly suggesting that the discrepancy is due to a

fundamental issue with the simulation.

This data-simulation mismatch prevents us from obtaining a complete understanding

of the data, but what does this mean for the actual ALL calculation? The answer lies in

how we determine the number of pions in a given pT bin, or more accurately how we don’t

determine that number. As our backgrounds are irreducible, there is no way to decide

whether a given pion candidate is a genuine pion or merely background; instead, we count

the total number of pions and then use the fit to determine what fraction of them likely

arise from our two backgrounds (and then determine the extent to which our backgrounds

dilute the final ALL, as will be covered in detail later). On the other hand, a pion candidate

with an invariant mass of 1 GeV is very unlikely to be an actual pion, so there is no point

in counting all the pion candidates in a given pT bin. Instead, we pick an invariant mass

window and count all the candidates in that window. In this analysis, we use a mass

window of .08-.25 GeV.

In the absolute worst-case scenario, the data-simulation mismatch indicates the pres-

ence of a previously unsuspected and strongly asymmetric background (or backgrounds),

concentrated on the shoulders of the pion peak. But in that case, our ALL should be

strongly dependent on what mass window we use. A mass window more tightly focused
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Figure 4-13: (Data-Embedding)/Data for each pT bin. The embedding is scaled separately
in each pT bin such that the integrals of the data and the embedding over the range .4 <
minv < .5 are the same.
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about the pion mass, excluding most or all of the shoulder area, would produce an ALL

that was different from that we get from the mass window we actually use. This suggests a

method for calculating a systematic uncertainty to describe this mismatch (which is most

likely simply due to the BSMD simulator not matching reality: as the BSMD is the key

detector for only a few analyses, less attention has been paid to its simulation than to other

detectors). By calculating ALL with various mass windows, we can see to what extent it

depends on on the mass window used and so to what extent the failure of the simulation

to describe the data limits our understanding. The mass windows we use are one that is

considerably tighter around the pion peak, running from .1 to .18, and the two made by

taking one end from either the original or new window and pairing it with the other end

of the other window. These are shown on Figure 4.14, which reproduces Figure 4.7 but

adds lines to indicate the original and new mass windows (and the π0 mass itself) so that

what each window includes and excludes is clear. The results of the ALL calculation for

all four mass windows are shown in Figure 4.15. The systematic uncertainty is taken to be

the largest difference between the ALL using the original window and the ALL’s from the

new windows. The value of the uncertainty for each pT bin is shown in Table 4.2.

Transverse Component

It’s possible that there may be some net transverse polarization remaining in the beam even

after the spin rotators have given us a longitudinally polarized beam. Such a transverse

component to the beam might induce a transverse double spin asymmetry, AΣ, which

could affect our ALL measurement. Due to a lack of statistics, determining AΣ from

neutral pion production is not feasible. Instead, we use the value of AΣ measured from the

2009 pp200 inclusive jet production analysis. The transverse beam component turns out

not to contribute very much to the overall uncertainty: its values in each pT bin are shown

in Table 4.2 below.
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Figure 4-14: Mass windows, shown with data and simulation/background distributions
for each pT bin. The black dotted lines are the original mass window boundaries, the red
dotted lines show the new mass window boundaries, and the green line indicates the location
of the π0 mass peak.
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Figure 4-15: ALL vs pT for each mass window. Black is the original mass window,
.08 < minv < .25; red is .1 < minv < .25; green is .08 < minv < .18; and blue is
.1 < minv < .18.
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Figure 4-16: ALL with relative luminosity from the BBC (in black) and ZDC (in red).

Relative Luminosity

The final systematic uncertainty we have to deal with arises from our measurement of the

relative luminosity. As previously explained, the main relative luminosity measurement

comes from the BBC. However, we do have another detector which can also be used for

relative luminosity measurements, the ZDC. Because the ZDC has lower rates than the

BBC, the BBC relative luminosity measurement is preferred for the actual ALL measure-

ment, but we can use the ZDC relative luminosity to determine a systematic uncertainty,

simply by recalculating the ALL with the entirely independent value of R measured from

the ZDC instead of that from the BBC. Due to problems with the west ZDC in 2009, the

R used here is actually just from hits in the east ZDC, rather than from ZDC coincidences.

Figure 4.16 shows the BBC and ZDC ALL’s: the differences are too small to be seen on

the scale of this plot, but are given with the rest of the uncertainties in Table 4.2.

4.7 Results

The formula for ALL was given at the beginning of the chapter. However, this formula

assumes that every pion we reconstruct is a true pion, which we know is not the case. Since

we can’t actually separate out the background from the signal, we must account for it in
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Table 4.1: Background Fractions

pT bin Split-Photon Background Fraction Combinatorial Background Fraction
4-6.5 .038 .078
6.5-8 .061 .06
8-10.25 .034 .11
10.25-16 .061 .2
16-21 0 .3

some other fashion. This is done by calculating an observed ALL and then determining the

true ALL by taking into account the extent to which it is diluted by the backgrounds [21].

The first step is to calculate an ALL for the backgrounds: this is done by using mass

windows in which the backgrounds should dominate. For the combinatorial background,

we use the range 1.2 ≤ minv ≤ 2 GeV; for the split-photon background, 0 ≤ minv ≤ .06

GeV. In calculating these background ALL’s, we integrate over pT : since both backgrounds

arise from our algorithm or the detector, rather than physics, their asymmetry (should

there be one) should not be pT dependent. This also allows us to use two categories of

pion candidates that were previously discarded, those of decay type 0 and pT < 6 GeV

and those of decay type 3 and pT > 4 GeV. Both categories are dominated by background,

the former by split-photon background and the latter by combinatorial background, and

including them in the calculation of the background ALL allows for increased statistics and

so lower statistical uncertainties, helping to drive down our final uncertainties.

We must also calculate a background fraction for each background type and each pT

bin. This is done using the overall fit to the data, as discussed previously: each back-

ground distribution is integrated over the mass window using the normalization from the

fit, and then this integral is divided by the integral of the data over the mass window. The

background fractions for the primary mass window are shown in Table 4.1. Background

fractions are also calculated for each of the three mass windows used in determining the

data-simulation mismatch systematic.
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Table 4.2: ALL Uncertainties

Systematic Uncertainties
pT bin Trigger Bias Fit Relative Luminosity Transverse Component Statistical
4-6.5 .00028 .0069 .00014 .00025 .015
6.5-8 .00059 .0024 .00017 .00025 .01
8-10.25 .00097 .0078 .00033 .00025 .012
10.25-16 .0017 .016 .00017 .00025 .022
16-21 .0068 .021 .00018 .00025 .11

With these numbers, we are now prepared to calculate the true ALL from the formula

AmeasuredLL = (1− fsp − fcomb) ∗AtrueLL + fsp ∗AspLL + fcomb ∗AcombLL ,

where the f’s are the background fractions.

Table 4.2 shows the uncertainties, both statistical and systematic, in each pT bin; Table

4.3 shows the values of ALL in each pT bin, along with the statistical uncertainty, the total

systematic uncertainty (obtained by summing the systematics in quadrature), and the

total uncertainty (obtained by summing the statistical and total systematic uncertainties

in quadrature). Figure 4.17 shows the final result over the full pT range: the points are

located in the center of each bin. The black error bars shown are statistical, with the green

bands indicating the extent of the systematic uncertainties.

Table 4.3: ALL Results

pT bin ALL Statistical Uncertainty Total Systematic Uncertainty Total Uncertainty
4-6.5 .0094 .015 .0069 .017
6.5-8 .0084 .01 .0024 .01
8-10.25 .022 .012 .0078 .014
10.25-16 .0046 .022 .016 .027
16-21 -.073 .11 .021 .11
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Figure 4-17: π0ALL results, with systematic errors shown as green bands.

102



Chapter 5

Interpretation and Conclusion

To determine how meaningful our ALL result is, we need to compare it both to theoretical

predictions, to see how well it can discriminate among them, and to other ALL measure-

ments, to see how consistent it is with what is already known. Figure 5.1 shows this result

(triangles and red error bars, statistical errors only) compared to the 2006 STAR π0 ALL

result and to several theory curves [21], while Figure 5.2 shows the 2005 STAR π0 result [8].

Note that different trigger values in different years affect the error bars in the lowest pT

bin. In 2006, the BHT3 trigger was at 5.2 GeV, and the L2γ trigger required 3.8 GeV in

a tower and 5.2 GeV in the cluster containing it; in 2009, those numbers were increased

to 6, 4.5, and 6 respectively. The result is that the 2009 data is unable to improve signifi-

cantly on the 2006 result in the 4-6 GeV region, as it is largely dependent on jet triggers

which are both less efficient at finding high-pT π0s than the high-tower triggers and are

less represented in the data.

First of all, we note that the 2009 result is consistent with both the 2005 and 2006

results: there are no sudden changes in the value of the ALL which might suggest a problem

with this analysis. This means that, because of our improved error bars, we can be even

firmer in rejecting the maximal gluon polarization scenario (GRSV ∆G Max) (the new

data point at high pT also helps here) [21]. Additionally, we can compare our ALL result
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Figure 6-2: The double longitudinal spin asymmetry, ALL vs pT for inclusive π0

production. The error bars are purely statistical. The systematic uncertainty is
represented by the shaded band beneath the points. The measurement is compared
to a number of pQCD predictions for different input value of ∆G. See the text for
further explanation.

Table 6.2: ALL Results

pT Range ALL Stat. Error Syst. Error

[GeV ] (10−2) (10−2) (10−2)
5.2 - 6.75 0.85 1.1 0.13
6.75 - 8.25 0.22 1.38 0.13
8.25 - 10.5 2.85 1.91 0.13
10.5 - 16.0 -0.50 3.13 0.13
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Figure 5-1: Comparison of the 2009 ALL π0 result to the 2006 result and several theoretical
predictions and global fits.
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FIG. 2: (color online) (a) Mean transverse momentum fraction
of π0’s in their associated jets, as a function of pion pT , for
electromagnetically triggered events. Systematic errors are
shown by the shaded band around the data points. The curves
are results from simulations with the pythia event generator.
The solid curve includes detector effects simulated by geant,
while the dashed curve uses jet finding at the pythia particle
level. (b) The distribution of z for one pT bin, compared to
pythia with a full detector response simulation.

found to be around 0.7 and to rise slightly with pion pT ,
consistent with measurements of leading charged hadrons
in jets in fixed-target experiments [29]. The results also
compare well to recent theoretical calculations for charged
pions [30], considering the increase of the measured pion
momentum fraction due to energy not reconstructed in
the jet. The expectations from a pythia-based (version
6.205 [31] with ‘CDF Tune A’ settings [32]) Monte Carlo
simulation are also shown. The �z� measured in jets found
on the pythia particle level, i.e., without any detector
effects, is lower than in the data due to resolution effects
and losses in the jet reconstruction, indicating the influ-
ence of the detector on the measurement. Results from
a geant-based STAR detector simulation show good
agreement with the data, demonstrating the reliability of
the simulation framework used in the present analysis.

Figure 2(b) shows the distribution of z for one of the
bins in pion pT in comparison to pythia with a geant-
based detector simulation. To maximize the statistics in
the simulation, the generator-level π0’s were used with-
out requiring an explicit reconstruction. This led to a
softening of the falling edge of the distribution at high
z in simulations, since a full geant simulation was used
for the containing jets, but did not affect the mean of the
distribution. A small fraction of the events had z > 1,
apparently corresponding to pions that carried more trans-
verse momentum than their containing jet. This excess
was caused by corrections applied during jet reconstruc-
tion, which in some cases led to an underestimation of
the jet energy, and was well reproduced in simulations.
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FIG. 3: (color online) Longitudinal double-spin asymmetry
for inclusive π0 production at midrapidity in p+p collisions at√

s = 200 GeV, compared to NLO pQCD calculations based
on the gluon distributions from the GRSV [33], GS-C [34],
and DSSV [12] global analyses. The systematic error (shaded
band) does not include a 9.4% normalization uncertainty due
to the beam polarization measurement.

The asymmetry [Eq. (1)] was calculated as

ALL =
1

P1P2

(N++ −RN+−)
(N++ + RN+−)

, (3)

where N++ and N+− are the π0 yields in equal and
opposite beam helicity configurations, respectively, and
R is the luminosity ratio for those two helicities. Typical
values of R, measured with the BBCs to a statistical
precision of 10−3–10−4 per run, ranged from 0.85 to 1.2,
depending on fill and bunch pattern. Figure 3 shows
the measured longitudinal double-spin asymmetry for π0

production. The data points are plotted at the mean pion
pT in each bin. The lowest-pT point at 4.17 GeV/c was
obtained from HT1 triggers only; other points are the
HT1 and HT2 combined results.

The systematic errors shown in the figure include
point-to-point contributions from π0 yield extraction
[(4–14)×10−3], invariant mass background subtraction
[(6–11)×10−3], and remaining beam background [(1–
9)×10−3], as well as pT -correlated contributions from
relative luminosity uncertainties (9× 10−4) and from non-
longitudinal spin components (3×10−4). All of the errors
above are absolute errors on the measured asymmetry.
An evaluation of the effects of non-longitudinal compo-
nents of the beam polarization was not possible due to
the limited statistics of π0’s in data taken with trans-
versely polarized beams. Instead, the largest value from
the jet measurement [11] over the relevant momentum
range was taken as an estimate of this systematic error.
An overall normalization uncertainty of 9.4% due to the
uncertainty in the RHIC CNI polarimeter calibration is
not shown. Studies of parity-violating single spin asym-
metries and randomized spin patterns showed no evidence
of bunch-to-bunch or fill-to-fill systematics.

Figure 5-2: The published STAR neutral pion ALL result using data taken in 2005.

to the DSSV and GRSV-STD global fits. At low pT , our result is consistently above DSSV

and falls closer to GRSV-STD; at higher pT , by contrast, we are closer to DSSV. While

the error bars are too large to make firm conclusions here, there is a clear trend.

The trend becomes even more significant when compared with other ALL results, both

from other experiments and using other observables. To start with, we can compare to

the π0 ALL result from the PHENIX experiment, the other large physics experiment at

RHIC. As you can see in Figure 5.3 [7], the PHENIX and STAR results are complementary:

PHENIX does best at low pT values that STAR cannot reach, while STAR provides access

to the high-pT region which PHENIX has difficulty reaching. Note that the STAR and

PHENIX results are consistent in the overlap region. And again, at low pT , though not

at the lowest values that PHENIX can probe, the PHENIX result is above the DSSV

prediction (though DSSV is not shown on this plot, values that are near or above GRSV-

STD are above DSSV).

Finally, we compare to the STAR single-inclusive jet ALL measurement, shown in Figure

5.4 [4]. This result is plotted with DSSV’s single-inclusive jet prediction in green: once
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!2 ¼ 0:4 GeV2 in the GRSV parametrization. Similar to
our previous analysis [8], "2 values were calculated using
our combined 2005 and 2006 data for these expectations.
In Fig. 2(b), these values are plotted as a function of

!G½0:02;0:3# evolved to !2 ¼ 4 GeV2. We previously esti-
mated the nonperturbative contribution to be small for
pT > 2 GeV=c [8], and so use this as a minimum cutoff
in this analysis. The solid curve shows the result consider-
ing only statistical uncertainties.

The quadratic !G contribution from gg interactions in
pþ p collisions leads to two minima in Fig. 2(b), while
the linear !G contribution from qg interactions breaks the
symmetry in these minima [4,8]. The "2 profile is thus not
parabolic, and so we show !"2 % "2 & "2

min ¼ 1 and 9
corresponding to ‘‘1#’’ and ‘‘3#’’ uncertainties.

The effects of the two largest experimental systematic
uncertainties, due to polarization and relative luminosity,
are shown in Fig. 2(b). The polarization uncertainty is
insignificant when extracting !G. However, the uncer-
tainty on relative luminosity, though small, cannot be
neglected. Accounting for statistical uncertainty, we find

!G½0:02;0:3#
GRSV ¼ 0:2' 0:1 (1#) and 0:2þ0:2

&0:8 (3#) with an
additional experimental systematic uncertainty of '0:1.

Figure 3(a) shows ALL expectations [4,16] based on the
parametrizations discussed above, along with the pDIS
uncertainty on !gðxÞ in BB propagated to ALL. The "2

values for comparing each curve with the data are given in
Table I. The three fit results without a node in!gðxÞ—LSS,

GRSV and BB—have large values of !G½0:02;0:3# which
lead to relatively large asymmetries that lie mostly above
the data, though they are consistent within the large uncer-
tainty from pDIS. For GS-C and DSSV, which have a node
in !gðxÞ near the center of the sampled x region, a can-
cellation between the positive and negative contribution in

the wide x distribution in each pT bin leads to a small value
of !G½0:02;0:3# and thus small ALL.
To investigate if there is any consistent constraint on

!G½0:02;0:3#, independent of the parametrization choice, the
"2 profiles in Fig. 3(b) were calculated based on the pDIS
fit results in Fig. 1(a) (excluding DSSV). New polarized
gluon distributions were produced using !gðxÞ ¼
$!gBFðxÞ at the input scale, with!gBFðxÞ the best fit result.
For each parametrization, a family of ALL curves were
generated by varying $, i.e., varying !G½0;1# while fixing
both the quark helicity distributions and the shape of!gðxÞ
to the best fit values. This approach differs from that of
Fig. 2(b), where both the quark helicity distributions and
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Figure 5-3: The 2005 and 2006 π0 ALL results from the PHENIX experiments, compared
to several theory curves.

again, the data are above the DSSV prediction. The persistence of this trend across

numerous observables and multiple detectors convinced DSSV to recalculate their polarized

parton distributions. The result is shown in magenta on Figure 5.4: the new DSSV is

above the old DSSV at lower pT values before coming back to join it at the higher values.

The previous DSSV polarized gluon distributions corresponded to a value of ∆G = −.1
(compared to ∆G = 1.8 for GRSV-MAX, ∆G = .4 for GRSV-STD, and ∆G = .1 for

GRSV-ZERO). The new DSSV polarized gluon distribution corresponds to a value of ∆G =

.1 integrated from .05 < x < .2 (over the full x range, the value is ∆G ∼ .12) [4]. This new

value of ∆G is almost as large as the quark spin contribution 1
2∆Σ ∼ .15. Rather than ∆G

being negligible, as many people thought, recent ALL results, including this one, suggest

that the gluon spin contribution to the proton spin is actually of a similar magnitude to

the quark spin contribution.

The next step from here is to move on to correlated results, such as measuring ALL for

dijets rather than for single-inclusive jets. Figure 5.5 shows the preliminary 2009 STAR

dijet ALL measurement, compared to several theory curves [3]. Dijet and other correlation

measurements allow us to start investigating the shape of the ∆g(x,Q2) distribution, in-

stead of just its first moment. Similarly to the π0 and inclusive jet results, the dijet result
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Figure 6: Preliminary STAR run-9 data [40] for the double-helicity asymmetry ALL for single-inclusive
jet production, as a function of jet transverse momentum for |η| < 1. The preliminary run-6 data are
shown as well. The theoretical curves are as described in the caption. The additional solid magenta
line gives the result for a special DSSV set of polarized parton distributions, for which the truncated
moment of ∆g over the region 0.001 ≤ x ≤ 1 was varied allowing the total χ2 of the fit to change by
2%.

which is just within the range
� 0.2

0.05

dx ∆g(x, Q2 = 10 GeV2) = 0.005+0.129
−0.164 (13)

quoted as more conservative uncertainty (∆χ2/χ2 = 2%) in [13]. Despite the fact that this really is
only an illustration that cannot replace a proper re-analysis of the data, it does appears that, for the
first time, there are indications of non-vanishing gluon polarization in the nucleon. Figure 7 shows the
comparison to the new preliminary PHENIX π0 data [41]. Here the values of ALL are much smaller,
which is mostly due to the fact that lower values of x are probed at the transverse momenta relevant in
the PHENIX measurements. One can see that the data are well described by both the DSSV set and
the special set of polarized parton distributions used in Fig. 6.

4 The future: Electron Ion Collider (EIC)

An Electron Ion Collider is currently being considered in the U.S. as a new frontier facility to explore
strong-interaction phenomena [31]. One of its key features would be the availability of high-energy,
high-luminosity polarized ep collisions to probe nucleon spin structure. This would also allow precision
extractions of ∆g, in particular from scaling violations of the proton’s spin-dependent structure function
g1. Figure 8 shows the results of a recent dedicated phenomenological study [44]. “Pseudo” EIC-data
were generated for collisions of 5 GeV electrons with 50, 100, 250, and 325 GeV protons and were added
to the DSSV global analysis code. The statistical precision of the data sets for 100− 325 GeV protons
was taken to correspond to about two months of running at the anticipated luminosities for eRHIC
with an assumed operations efficiency of 50%. For 5 × 50 GeV an integrated luminosity of 5 fb−1 was

9

Figure 5-4: The 2006 and 2009 STAR single-inclusive jet ALL results, compared with a
number of theory curves, including old DSSV (in green) and new DSSV (in magenta).
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FIGURE 1. The 2009 dijet ALL measured at STAR has been measured in three pseudorapidity accep-
tances, which allows the result to be used to constrain the kinematics of the interacting partons.

a cloud computing facility at Clemson University [9]. Events were generated using
PYTHIA version 6.4.23 [10] with tune 329 (Pro-pt0) [11] and the detector response
simulated using GEANT [12]. Event filtering was used to substantially decrease the
amount of time needed to generate the simulation. Comparisons between data and
simulation kinematic distributions showed good agreement.

The asymmetries for the three different acceptances can be seen in Figure 1. The black
points with error bars are the data with statistical uncertainties, while the systematic
uncertainties are shown as yellow bands. The dominant systematics are the uncertainty
in the trigger efficiencies which arises from the different sub-process mixtures in the
different theory scenarios and the uncertainty in the jet energy scale. The results are
compared with the calculations of GRSV (std) [13], DSSV [14], and GS (C) [15].

The kinematics represented by the two exclusive acceptances are shown in Figure
2. The left panels show the kinematics for the topology with the jets having the same
sign pseudorapidity (represented by the East or West side of the detector) and the right
panels show them for the jets having opposite sign. The top panels show the distributions
of x1(2) in red (blue) for a low (high) invariant mass bin in the solid (dashed) lines. The
bottom panels show the mean and RMS of the x1(2) distributions in red (blue).

CONCLUSIONS

The dijet longitudinal double-spin asymmetry ALL has been measured in polarized
proton-proton collisions at

√
s = 200 GeV by the STAR experiment using data from the

2009 RHIC running period. The measurement of the dijet ALL in multiple pseudorapidity
acceptances allows constraints to be made on the shape of ∆g(x) for the first time.
These constraints will improve the uncertainties on extrapolations of ∆g(x) to lower
x kinematic regions. This result, along with the STAR inclusive jet result from 2009
[16], represents the first measurement of a non-zero ALL at mid-rapidity.

Figure 5-5: The 2009 STAR preliminary dijet result.

shows an asymmetry that is larger than predicted by DSSV at lower invariant mass values.

If the above result of the non-zero value of ∆G holds up under further investigations such

as these, it will establish that the polarization of the quarks and gluons account for only

about half of the proton spin. To account for the entire proton spin, a non-zero net orbital

motion of the quarks and gluons is needed.
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